
PHP-HTTP Documentation
Release 1.0.0

The PHP-HTTP Team

Jan 08, 2024

CONTENTS

1 HTTPlug 3
1.1 They use us . 3

2 Packages 5

3 The future 7

4 Community 9
4.1 HTTPlug: HTTP client abstraction . 9
4.2 HTTPlug usage . 10
4.3 Exceptions . 17
4.4 Migrating to HTTPlug . 17
4.5 Clients & Adapters . 18
4.6 Plugins . 36
4.7 Framework Integrations . 58
4.8 Backwards compatibility . 72
4.9 Message . 73
4.10 Client Common . 79
4.11 Adapter Integration Tests . 84
4.12 Promise . 84
4.13 Discovery . 86
4.14 Multipart Stream Builder . 94
4.15 Development . 95

Index 101

i

ii

PHP-HTTP Documentation, Release 1.0.0

PHP-HTTP is the next step in standardizing HTTP interaction for PHP packages.

It builds on top of PSR-7, which defines interfaces for HTTP requests and responses. The HTTPlug HTTP client
interface has been standardized in PSR-18 to define synchronous HTTP requests. When using a client that implements
PSR-18, we recommend directly using PSR-18 and not HTTPlug nor our adapters.

However, PSR-18 does not define asynchronous requests. HTTPlug provides interfaces for those, but to do that also
needs to define how promises are implemented.

PHP-HTTP has three goals:

1. Encourage package developers to depend on the simple HTTPlug interface instead of concrete HTTP clients.

2. Provide good quality HTTP-related packages to the PHP community.

3. Now that PSR-18 exists, we miss a PSR for asynchronous requests. This is blocked by not having a PSR for
promises.

CONTENTS 1

https://www.php-fig.org/psr/psr-7
https://www.php-fig.org/psr/psr-18

PHP-HTTP Documentation, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

HTTPLUG

HTTPlug abstracts from HTTP clients written in PHP, offering a simple interface. It also provides an implementation-
independent plugin system to build pipelines regardless of the HTTP client implementation used.

Read more about HTTPlug.

1.1 They use us

3

https://github.com/geocoder-php/Geocoder
https://github.com/mailgun/mailgun-php
https://github.com/FriendsOfSymfony/FOSHttpCache
https://github.com/KnpLabs/php-github-api
https://github.com/getsentry/sentry-php
https://github.com/hwi/HWIOAuthBundle

PHP-HTTP Documentation, Release 1.0.0

4 Chapter 1. HTTPlug

CHAPTER

TWO

PACKAGES

PHP-HTTP offers several packages:

Type Description Namespace
Clients HTTP clients: Socket, cURL and others Http\Client\[Name]
Client
adapters

Adapters for other clients: Guzzle, React and others Http\Adapter\[Name]

Plugins Implementation-independent authentication, cookies and
more

Http\Client\Common\Plugin\
[Name]

Read more about clients and adapters and plugins.

5

PHP-HTTP Documentation, Release 1.0.0

6 Chapter 2. Packages

CHAPTER

THREE

THE FUTURE

HTTPlug, as a working example of an HTTP client interface, can serve as a basis for discussion around a future HTTP
client PSR.

7

PHP-HTTP Documentation, Release 1.0.0

8 Chapter 3. The future

CHAPTER

FOUR

COMMUNITY

If you want to get in touch, feel free to ask questions on our Slack channel or ping @httplug on Twitter.

4.1 HTTPlug: HTTP client abstraction

HTTPlug allows you to write reusable libraries and applications that need an HTTP client without binding to a specific
implementation. When all packages used in an application only specify HTTPlug, the application developers can
choose the client that best fits their project and use the same client with all packages.

4.1.1 Client Interfaces

HTTPlug defines two HTTP client interfaces that we kept as simple as possible:

• PSR-18 defines the ClientInterface with a sendRequest method that accepts a PSR-7 RequestInterface
and either returns a PSR-7 ResponseInterface or throws an exception that implements Psr\Http\Client\
ClientExceptionInterface.

HTTPlug has the compatible interface HttpClient which now extends the PSR-18 interface to allow migrating
to PSR-18.

• HttpAsyncClient defines a sendAsyncRequest method that sends a PSR-7 request asynchronously and al-
ways returns a Http\Client\Promise. See Promise for more information.

4.1.2 Implementations

PHP-HTTP offers two types of clients that implement the above interfaces:

1. Standalone clients that directly implement the interfaces.

Examples: cURL Client and Socket Client (deprecated).

2. Adapters that wrap existing HTTP clients, such as Guzzle. These adapters act as a bridge between the HTTPlug
interfaces and the clients that do not (yet) implement these interfaces.

More and more clients implement PSR-18 directly. If that is all you need, we recommend not using HTTPlug as
it would only add overhead. However, as there is no PSR for asynchronous requests yet, you can use the adapters
to do such requests without binding yourself to a specific implementation.

Examples: Guzzle 7 Adapter and React Adapter.

9

http://slack.httplug.io/
https://twitter.com/httplug

PHP-HTTP Documentation, Release 1.0.0

Note: Ideally, there will be a PSR for asynchronous requests and all HTTP client libraries out there will implement
PSR-18 and the not yet existing PSR. At that point, our adapters will no longer be necessary.

4.1.3 Usage

There are two main use cases for HTTPlug:

• Usage in an application that executes HTTP requests (see HTTPlug Tutorial and Framework Integrations);

• Usage in a reusable package that executes HTTP requests (see HTTPlug for Library Developers).

4.1.4 History

This project has been started by Eric Geloen as Ivory Http Adapter. It never made it to a stable release, but it relied on
PSR-7 which was not stable either that time. Because of the constantly changing PSR-7, Eric had to rewrite the library
over and over again (at least the message handling part, which in most cases affected every adapter as well).

In 2015, a decision has been made to move the library to its own organization, so PHP-HTTP was born.

See Migrating to HTTPlug for a guide how to migrate your code from the Ivory adapter.

4.2 HTTPlug usage

HTTPlug is relevant for three groups of users:

4.2.1 HTTPlug for library users

This page explains how to set up a library that depends on HTTPlug.

TL;DR

For the impatient: Require the following packages before requiring the library you plan to use:

composer require php-http/curl-client guzzlehttp/psr7 php-http/message

If you use a framework, check the integrations overview to see if there is a plugin for your framework.

Details

If a library depends on HTTPlug, it requires the virtual package php-http/client-implementation. A virtual package is
used to declare that the library needs an implementation of the HTTPlug interfaces, but does not care which imple-
mentation specifically.

When using such a library, you need to choose a HTTPlug client and include that in your project explicitly. Lets say
you want to use some/awesome-library that depends on php-http/client implementation. In the example we
are using cURL:

$ composer require php-http/curl-client some/awesome-library

10 Chapter 4. Community

https://github.com/egeloen
https://github.com/egeloen/ivory-http-adapter
https://packagist.org/providers/php-http/client-implementation

PHP-HTTP Documentation, Release 1.0.0

You can pick any of the clients or adapters provided by PHP-HTTP. Popular choices are php-http/curl-client and
php-http/guzzle6-adapter.

Many libraries also need a PSR-7 implementation and the PHP-HTTP message factories to create messages. The PSR-7
implementations are Laminas Diactoros (also still supports the abandoned Zend Diactoros), Guzzle’s PSR-7 and Slim
Framework’s PSR-7 messages. Do one of the following:

$ composer require php-http/message laminas/laminas-diactoros

$ composer require php-http/message guzzlehttp/psr7

$ composer require php-http/message slim/psr7

Troubleshooting

Composer fails

If you try to include the HTTPlug dependent library before you have included a HTTP client in your project, Composer
will throw an error:

Loading composer repositories with package information
Updating dependencies (including require-dev)
Your requirements could not be resolved to an installable set of packages.

Problem 1
- The requested package php-http/client-implementation could not be found in any␣

→˓version,
there may be a typo in the package name.

You can solve this by including a HTTP client or adapter, as described above.

No Message Factories

You may get an exception telling you that “No message factories found”, this means that either you have not installed
a PSR-7 implementation or that there are no factories installed to create HTTP messages.

No message factories found. To use Guzzle or Diactoros factories install
php-http/message and the chosen message implementation.

You can solve this by including php-http/message and Zend Diactoros or Guzzle PSR-7, as described above.

Background

Reusable libraries do not depend on a concrete implementation but only on the virtual package php-http/
client-implementation. This is to avoid hard coupling and allows the user of the library to choose the imple-
mentation. You can think of this as an “interface” or “contract” for packages.

The reusable libraries have no hard coupling to the PSR-7 implementation either, which gives you the flexibility to
choose an implementation yourself.

4.2. HTTPlug usage 11

PHP-HTTP Documentation, Release 1.0.0

4.2.2 HTTPlug Tutorial

This tutorial should give you an idea how to use HTTPlug in your project. HTTPlug has two main use cases:

1. Usage in your project;

2. Usage in a reusable package.

This tutorial will start with the first use case and then explain the special considerations to take into account when
building a reusable package.

We use Composer for dependency management. Install it if you don’t have it yet.

Note: If you are using a framework, check the Framework Integrations to see if there is an integration available.
Framework integrations will simplify the way you set up clients, letting you focus on handling the requests.

Setting up the Project

mkdir httplug-tutorial
cd httplug-tutorial
composer init
specify your information as you want. say no to defining the dependencies interactively
composer require php-http/guzzle6-adapter

The last command will install Guzzle as well as the Guzzle HTTPlug adapter and the required interface repositories.
We are now ready to start coding.

Writing Some Simple Code

Create a file demo.php in the root folder and write the following code:

<?php
require('vendor/autoload.php');

use Http\Discovery\HttpClientDiscovery;
use Http\Discovery\MessageFactoryDiscovery;

$client = HttpClientDiscovery::find();
$messageFactory = MessageFactoryDiscovery::find();
$homeResponse = $client->sendRequest(

$messageFactory->createRequest('GET', 'http://httplug.io')
);

var_dump($homeResponse->getStatusCode()); // 200, hopefully

$missingPageResponse = $client->sendRequest(
$messageFactory->createRequest('GET', 'http://httplug.io/missingPage')

);

var_dump($missingPageResponse->getStatusCode()); // 404

12 Chapter 4. Community

https://getcomposer.org

PHP-HTTP Documentation, Release 1.0.0

Using an Asynchronous Client

Asynchronous client accepts a PSR-7 RequestInterface and returns a Http\Promise\Promise:

use Http\Discovery\HttpAsyncClientDiscovery;

$httpAsyncClient = HttpAsyncClientDiscovery::find();
$promise = $httpAsyncClient->sendAsyncRequest($request);

Using the Callback System

The promise allows you to add callbacks for when the response is available or an errors happens by using the then
method:

$promise->then(function (ResponseInterface $response) {
// onFulfilled callback
echo 'The response is available';

return $response;
}, function (Exception $e) {

// onRejected callback
echo 'An error happens';

throw $e;
});

This method will return another promise so you can manipulate the response and/or exception and still provide a way
to interact with this object for your users:

$promise->then(function (ResponseInterface $response) {
// onFulfilled callback
echo 'The response is available';

return $response;
}, function (Exception $e) {

// onRejected callback
echo 'An error happens';

throw $e;
})->then(function (ResponseInterface $response) {

echo 'Response still available';

return $response;
}, function (Exception $e) {

throw $e
});

In order to achieve the chain callback, if you read previous examples carefully, callbacks provided to the then method
must return a PSR-7 ResponseInterface or throw a Http\Client\Exception. For both of the callbacks, if it
returns a PSR-7 ResponseInterface it will call the onFulfilled callback for the next element in the chain, if it
throws a Http\Client\Exception it will call the onRejected callback.

i.e. you can inverse the behavior of a call:

4.2. HTTPlug usage 13

https://www.php-fig.org/psr/psr-7

PHP-HTTP Documentation, Release 1.0.0

$promise->then(function (ResponseInterface $response) use($request) {
// onFulfilled callback
echo 'The response is available, but it\'s not ok...';

throw new HttpException('My error message', $request, $response);
}, function (Exception $e) {

// onRejected callback
echo 'An error happens, but it\'s ok...';

return $exception->getResponse();
});

Calling the wait method on the promise will wait for the response or exception to be available and invoke callback
provided in the then method.

Using the promise directly

If you don’t want to use the callback system, you can also get the state of the promise with $promise->getState()
will return of one Promise::PENDING, Promise::FULFILLED or Promise::REJECTED.

Then you can get the response of the promise if it’s in FULFILLED state or trigger the exception of the promise if it’s in
REJECTED state with $promise->wait(true) call.

Note: Read Promise for more information about promises.

Example

Here is a full example of a classic usage when using the sendAsyncRequest method:

use Http\Client\Exception;
use Http\Discovery\HttpAsyncClientDiscovery;

$httpAsyncClient = HttpAsyncClientDiscovery::find();

$promise = $httpAsyncClient->sendAsyncRequest($request);
$promise->then(function (ResponseInterface $response) {
echo 'The response is available';

return $response;
}, function (Exception $e) {
echo 'An error happens';

throw $e;
});

// Do some stuff not depending on the response, calling another request, etc ..
...

try {
// We need now the response for our final treatment...

(continues on next page)

14 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

$response = $promise->wait(true);
} catch (Exception $e) {

// ...or catch the thrown exception
}

// Do your stuff with the response
...

Handling Errors

TODO: explain how to handle exceptions, distinction between network exception and HttpException.

4.2.3 HTTPlug for Library Developers

If you’re developing a library or framework that performs HTTP requests, you should not be dependent on concrete
HTTP client libraries (such as Guzzle). Instead, you should only make sure that some HTTP client is available. It
is then up to your users to decide which HTTP client they want to include in their projects. This complies with the
dependency inversion principle.

Manage Dependencies

To depend on some HTTP client, specify either psr/http-client-implementation for PSR-18 synchronous re-
quests or php-http/async-client-implementation for asynchronous requests in your library’s composer.json.
These are virtual Composer packages that will throw an error if no concrete client was found:

{
"name": "you/and-your-awesome-library",
"require": {

"psr/http-client-implementation": "^1.0"
}

}

Your users then include your project alongside with a HTTP client of their choosing in their project’s composer.json.
In this case, the user decided to include the Socket client:

{
"name": "some-user/nice-project",
"require": {

"you/and-your-awesome-library": "^1.2",
"php-http/socket-client": "^1.0"

}
}

4.2. HTTPlug usage 15

https://en.wikipedia.org/wiki/Dependency_inversion_principle

PHP-HTTP Documentation, Release 1.0.0

Testing your library

When you install your library on a CI-server (like Travis) you need to include a client. So specify any concrete client in
the require-dev section in your library’s composer.json. You could use any client but the Mock Client will make
it easier to write good tests.

{
"name": "you/and-your-awesome-library",
"require": {

"psr/http-client-implementation": "^1.0"
},
"require-dev": {

"php-http/mock-client": "^1.0"
}

}

Messages

When you construct HTTP message objects in your library, you should not depend on a concrete PSR-7 message
implementation. Instead, use the HTTP factories.

Discovery

To make it as convenient as possible for your users you should use the Discovery component. It will help you find
factories to create Request, Streams etc. That component is light weight and has no hard dependencies.

Plugins

If your library relies on specific plugins, the recommended way is to provide a factory method for your users, so they
can create the correct client from a base HttpClient. See Libraries that Require Plugins for a concrete example.

User Documentation

To explain to your users that they need to install a concrete HTTP client, you can point them to HTTPlug for library
users.

Your Final composer.json

Putting it all together your final composer.json is much likely to look similar to this:

{
"name": "you/and-your-awesome-library",
"require": {

"psr/http-message": "^1.0",
"psr/http-client-implementation": "^1.0",
"php-http/httplug": "^2.0",
"php-http/message-factory": "^1.0",
"php-http/discovery": "^1.0"

},
(continues on next page)

16 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

"require-dev": {
"php-http/mock-client": "^1.0",
"php-http/message": "^1.0",
"guzzlehttp/psr7": "^1.0"

}
}

4.3 Exceptions

HTTPlug defines a common interface for all exceptions thrown by HTTPlug implementations. Every exception thrown
by a HTTP client must implement Http\Client\Exception.

HttpClient::sendRequest() can throw one of the following exceptions.

Exception Thrown when Methods available
TransferException something unexpected happened -

RequestException the request is invalid getRequest()
NetworkException no response received due to network issues getRequest()
HttpException error response getRequest() getResponse()

Note: By default clients will always return a PSR-7 response instead of throwing a HttpException. Write your
application to check the response status or use the Error Plugin to make sure the HttpException is thrown.

Note: The sendAsyncRequest should never throw an exception but always return a Promise. The exception classes
used in Promise::wait and the then callback are however the same as explained here.

4.4 Migrating to HTTPlug

If you currently use a concrete HTTP client implementation or the Ivory HTTP Adapter, migrating to HTTPlug should
not be very hard.

4.4.1 Migrating from Ivory HTTP Adapter

The monolithic Ivory package has been separated into several smaller, more specific packages.

Instead of Ivory\HttpAdapter\PsrHttpAdapter, use Http\Client\HttpClient. The HttpClient simply has a
method to send requests.

If you used the Ivory\HttpAdapter\HttpAdapter, have a look at Client Common and use the Http\Client\
Utils\HttpMethodsClient which wraps any HttpClient and provides the convenience methods to send requests
without creating RequestInterface instances.

4.3. Exceptions 17

PHP-HTTP Documentation, Release 1.0.0

4.4.2 Migrating from Guzzle

Replace usage of GuzzleHttp\ClientInterface with Http\Client\HttpClient. The send method is called
sendRequest. Instead of the $options argument, configure the client appropriately during set up. If you need
different settings, create different instances of the client. You can use Plugins to further tune your client.

If you used the request method, have a look at Client Common and use the Http\Client\Utils\
HttpMethodsClient which wraps any HttpClient and provides the convenience methods to send requests without
creating RequestInterface instances.

4.5 Clients & Adapters

There are two types of libraries you can use to send HTTP messages; clients and adapters. A client implements the
HttpClient and/or the HttpAsyncClient interfaces directly. A client adapter is a class implementing the interface
and forwarding the calls to an HTTP client not implementing the interface. (See Adapter pattern on Wikipedia).

Hint: Modern PHP clients implement the PSR-18 HTTP Client standard. If you want to do synchronous requests,
you don’t need a PHP-HTTP adapter anymore. We keep providing the the curl client and a mock client for testing.

The adapters are still useful if you need the PHP-HTTP HttpAsyncClient.

Note: All clients and adapters comply with Liskov substitution principle which means that you can easily change one
for another without any side effects.

4.5.1 cURL Client

This client uses cURL PHP extension.

Installation

To install the cURL client, run:

$ composer require php-http/curl-client

Usage

The cURL client needs a PSR-17 message factory and stream factory to work. You can either specify the factory
explicitly:

use Http\Client\Curl\Client;
use Http\Message\MessageFactory\DiactorosMessageFactory;
use Http\Message\StreamFactory\DiactorosStreamFactory;

$client = new Client(new DiactorosMessageFactory(), new DiactorosStreamFactory());

Or you can omit the parameters and let the client use Discovery to determine a suitable factory:

18 Chapter 4. Community

https://en.wikipedia.org/wiki/Adapter_pattern
https://en.wikipedia.org/wiki/Liskov_substitution_principle
http://php.net/curl

PHP-HTTP Documentation, Release 1.0.0

use Http\Client\Curl\Client;
use Http\Discovery\MessageFactoryDiscovery;
use Http\Discovery\StreamFactoryDiscovery;

$client = new Client();

Configuring Client

You can use cURL options to configure Client:

use Http\Client\Curl\Client;
use Http\Discovery\MessageFactoryDiscovery;
use Http\Discovery\StreamFactoryDiscovery;

$options = [
CURLOPT_CONNECTTIMEOUT => 10, // The number of seconds to wait while trying to␣

→˓connect.
];
$client = new Client(null, null, $options);

The following options can not be changed in the set up. Most of them are to be provided with the request instead:

• CURLOPT_CUSTOMREQUEST

• CURLOPT_FOLLOWLOCATION

• CURLOPT_HEADER

• CURLOPT_HTTP_VERSION

• CURLOPT_HTTPHEADER

• CURLOPT_NOBODY

• CURLOPT_POSTFIELDS

• CURLOPT_RETURNTRANSFER

• CURLOPT_URL

• CURLOPT_USERPWD

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

• Read more about promises when using asynchronous requests.

4.5. Clients & Adapters 19

http://php.net/curl_setopt

PHP-HTTP Documentation, Release 1.0.0

4.5.2 Mock Client

The mock client is a special type of client. It is a test double that does not send the requests that you pass to it, but
collects them instead. You can then retrieve those request objects and make assertions about them. Additionally, you
can fake HTTP server responses and exceptions to validate how your code handles them. This behavior is most useful
in tests.

To install the Mock client, run:

$ composer require php-http/mock-client

Collect Requests

To make assertions:

use Http\Mock\Client;

class YourTest extends \PHPUnit_Framework_TestCase
{

public function testRequests()
{

// $firstRequest and $secondRequest are Psr\Http\Message\RequestInterface
// objects

$client = new Client();
$client->sendRequest($firstRequest);
$client->sendRequest($secondRequest);

$bothRequests = $client->getRequests();

// Do your assertions
$this->assertEquals('GET', $bothRequests[0]->getMethod());
// ...

}
}

Fake Responses and Exceptions

By default, the mock client returns an empty response with status 200. You can set responses and exceptions the mock
client should return / throw. You can set several exceptions and responses, to have the client first throw each exception
once and then each response once on subsequent calls to send(). Additionally you can set a default response or a default
exception to be used instead of the empty response.

Test how your code behaves when the HTTP client throws exceptions or returns certain responses:

use Http\Mock\Client;

class YourTest extends \PHPUnit_Framework_TestCase
{

public function testClientReturnsResponse()
{

$client = new Client();
(continues on next page)

20 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

$response = $this->createMock('Psr\Http\Message\ResponseInterface');
$client->addResponse($response);

// $request is an instance of Psr\Http\Message\RequestInterface
$returnedResponse = $client->sendRequest($request);
$this->assertSame($response, $returnedResponse);
$this->assertSame($request, $client->getLastRequest());

}
}

Or set a default response:

use Http\Mock\Client;

class YourTest extends \PHPUnit_Framework_TestCase
{

public function testClientReturnsResponse()
{

$client = new Client();

$response = $this->createMock('Psr\Http\Message\ResponseInterface');
$client->setDefaultResponse($response);

// $firstRequest and $secondRequest are instances of Psr\Http\Message\
→˓RequestInterface

$firstReturnedResponse = $client->sendRequest($firstRequest);
$secondReturnedResponse = $client->sendRequest($secondRequest);
$this->assertSame($response, $firstReturnedResponse);
$this->assertSame($response, $secondReturnedResponse);

}
}

To fake an exception being thrown:

use Http\Mock\Client;

class YourTest extends \PHPUnit_Framework_TestCase
{

/**
* @expectedException \Exception
*/
public function testClientThrowsException()
{

$client = new Client();

$exception = new \Exception('Whoops!');
$client->addException($exception);

// $request is an instance of Psr\Http\Message\RequestInterface
$returnedResponse = $client->sendRequest($request);

}
}

4.5. Clients & Adapters 21

PHP-HTTP Documentation, Release 1.0.0

Or set a default exception:

use Http\Mock\Client;

class YourTest extends \PHPUnit_Framework_TestCase
{

/**
* @expectedException \Exception
*/
public function testClientThrowsException()
{

$client = new Client();

$exception = new \Exception('Whoops!');
$client->setDefaultException($exception);

$response = $this->createMock('Psr\Http\Message\ResponseInterface');
$client->addResponse($response);

// $firstRequest and $secondRequest are instances of Psr\Http\Message\
→˓RequestInterface

// The first request will returns the added response.
$firstReturnedResponse = $client->sendRequest($firstRequest);
// There is no more added response, the default exception will be thrown.
$secondReturnedResponse = $client->sendRequest($secondRequest);

}
}

Mocking request-dependent responses

You can mock responses and exceptions which are only used in certain requests or act differently depending on the
request.

To conditionally return a response when a request is matched:

use Http\Mock\Client;
use Psr\Http\Message\ResponseInterface;

class YourTest extends \PHPUnit_Framework_TestCase
{

/**
* @expectedException \Exception
*/
public function testClientThrowsException()
{

$client = new Client();

// $requestMatcher is an instance of Http\Message\RequestMatcher

$response = $this->createMock(ResponseInterface:class);
$client->on($requestMatcher, $response);

// $request is an instance of Psr\Http\Message\RequestInterface
(continues on next page)

22 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

$returnedResponse = $client->sendRequest($request);
}

}

Or for an exception:

use Http\Mock\Client;
use Exception;

class YourTest extends \PHPUnit_Framework_TestCase
{

public function testClientThrowsException()
{

$client = new Client();

// $requestMatcher is an instance of Http\Message\RequestMatcher

$exception = new \Exception('Whoops!');
$client->on($requestMatcher, $exception);

// $request is an instance of Psr\Http\Message\RequestInterface

$this->expectException(\Exception::class);
$returnedResponse = $client->sendRequest($request);

}
}

Or pass a callable, and return a response or exception based on the request:

use Http\Mock\Client;
use Psr\Http\Message\RequestInterface;

class YourTest extends \PHPUnit_Framework_TestCase
{

/**
* @expectedException \Exception
*/
public function testClientThrowsException()
{

$client = new Client();

// $requestMatcher is an instance of Http\Message\RequestMatcher

$client->on($requestMatcher, function (RequestInterface $request) {

// return a response
return $this->createMock('Psr\Http\Message\ResponseInterface');

// or an exception
return new \Exception('Whoops!');

});

(continues on next page)

4.5. Clients & Adapters 23

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

// $request is an instance of Psr\Http\Message\RequestInterface
$returnedResponse = $client->sendRequest($request);

}
}

Hint: If you’re using the Symfony Bundle, the mock client is available as a service with httplug.client.mock id.

See Mock Responses In Functional Tests for more on how to use the mock client in Symfony.

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

• Read more about promises when using asynchronous requests.

4.5.3 Symfony Client

The Symfony HTTP client provides a HttplugClient class that implements the Http\Client\HttpAsyncClient.
Until Symfony 5.4, it also implemented the Http\Client\HttpClient, newer versions implement the PSR-18
HttpClientInterface instead.

Installation

The Symfony client does not depend on HTTPlug, but the HttplugClient does. To use the Symfony client with
HTTPlug, you need to install both the client and HTTPlug with:

$ composer require symfony/http-client php-http/httplug

This client does not come with a PSR-7 implementation out of the box. If you do not require one, discovery <../discov-
ery> will install Nyholm PSR-7. If you do not allow the composer plugin of the php-http/discovery component,
you need to install a PSR-7 implementation manually:

$ composer require nyholm/psr7

Usage

use Symfony\Component\HttpClient\HttplugClient;

$symfonyClient = new HttplugClient();

Note: Check the official Symfony HttpClient documentation for more details.

24 Chapter 4. Community

https://github.com/Nyholm/psr7/
https://symfony.com/doc/current/components/http_client.html#httplug

PHP-HTTP Documentation, Release 1.0.0

4.5.4 Artax Adapter

An HTTPlug adapter for the Artax HTTP client.

Installation

To install the Artax adapter, which will also install Artax itself (if it was not yet included in your project), run:

$ composer require php-http/artax-adapter

Usage

Begin by creating a Artax adapter:

use Amp\Artax\DefaultClient;
use Http\Adapter\Artax\Client as ArtaxAdapter;
use Http\Message\MessageFactory\GuzzleMessageFactory;

$adapter = new ArtaxAdapter(new DefaultClient(), new GuzzleMessageFactory());

Or relying on discovery:

use Http\Adapter\Artax\Client as ArtaxAdapter;

$adapter = new ArtaxAdapter();

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

• Read more about promises when using asynchronous requests.

4.5.5 Guzzle 7 Adapter

An HTTPlug adapter for the Guzzle 7 HTTP client. Guzzle 7 supports PSR-18 out of the box. This adapter makes
sense if you want to use HTTPlug async interface or to use Guzzle 7 with a library that did not upgrade to PSR-18 yet
and depends on php-http/client-implementation.

Installation

To install the Guzzle adapter, which will also install Guzzle itself (if it was not yet included in your project), run:

$ composer require php-http/guzzle7-adapter

4.5. Clients & Adapters 25

https://github.com/amphp/artax
http://docs.guzzlephp.org/en/7.0/

PHP-HTTP Documentation, Release 1.0.0

Usage

To create a Guzzle7 adapter you should use the createWithConfig() function. It will let you to pass Guzzle configuration
to the client:

use Http\Adapter\Guzzle7\Client as GuzzleAdapter;

$config = [
'timeout' => 2,
'handler' => //...
// ...

];
$adapter = GuzzleAdapter::createWithConfig($config);

Note: If you want even more control over your Guzzle object, you may give a Guzzle client as first argument to the
adapter’s constructor:

use GuzzleHttp\Client as GuzzleClient;
use Http\Adapter\Guzzle7\Client as GuzzleAdapter;

$config = ['timeout' => 5];
// ...
$guzzle = new GuzzleClient($config);
// ...
$adapter = new GuzzleAdapter($guzzle);

If you pass a Guzzle instance to the adapter, make sure to configure Guzzle to not throw exceptions on HTTP error
status codes, or this adapter will violate PSR-18.

And use it to send synchronous requests:

use GuzzleHttp\Psr7\Request;

$request = new Request('GET', 'http://httpbin.org');

// Returns a Psr\Http\Message\ResponseInterface
$response = $adapter->sendRequest($request);

Or send asynchronous ones:

use GuzzleHttp\Psr7\Request;

$request = new Request('GET', 'http://httpbin.org');

// Returns a Http\Promise\Promise
$promise = $adapter->sendAsyncRequest(request);

26 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

• Read more about promises when using asynchronous requests.

4.5.6 React Adapter

An HTTPlug adapter for the React Http client.

Installation

Use Composer to install the React adapter. It will also install React as it’s a dependency.

$ composer require php-http/react-adapter

Usage

If you need control on the React instances, you can inject them during initialization:

use Http\Adapter\React\Client;

$systemDnsConfig = React\Dns\Config\Config::loadSystemConfigBlocking();
if (!$config->nameservers) {

$config->nameservers[] = '8.8.8.8';
}

$dnsResolverFactory = new React\Dns\Resolver\Factory();
$dnsResolver = $factory->create($config);

$connector = new React\Socket\Connector([
'dns' => $dnsResolver,

]);
$browser = new React\Http\Browser($connector);

$adapter = new Client($browser);

You can also use a ReactFactory in order to initialize React instances:

use Http\Adapter\React\ReactFactory;

$reactHttp = ReactFactory::buildHttpClient();

Then you can use the adapter to send synchronous requests:

use GuzzleHttp\Psr7\Request;

$request = new Request('GET', 'http://httpbin.org');

(continues on next page)

4.5. Clients & Adapters 27

https://github.com/reactphp/http
https://getcomposer.org

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

// Returns a Psr\Http\Message\ResponseInterface
$response = $adapter->sendRequest($request);

Or send asynchronous ones:

use GuzzleHttp\Psr7\Request;

$request = new Request('GET', 'http://httpbin.org');

// Returns a Http\Promise\Promise
$promise = $adapter->sendAsyncRequest(request);

Note that since v4 calling wait on HttpPromisePromise is expected to run inside a fiber:

use function React\Async\async;

async(static function () {
// Returns a Http\Promise\Promise
$promise = $adapter->sendAsyncRequest(request);

// Returns a Psr\Http\Message\ResponseInterface
$response = $promise->wait();

})();

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

• Read more about promises when using asynchronous requests.

4.5.7 Buzz Adapter (deprecated)

This adapter only implements the PHP-HTTP synchronous interface. This interface has been superseded by PSR-18,
which the Buzz HTTP client implements directly.

Installation

To install the Buzz adapter, which will also install Buzz itself (if it was not yet included in your project), run:

$ composer require php-http/buzz-adapter

28 Chapter 4. Community

https://github.com/kriswallsmith/Buzz

PHP-HTTP Documentation, Release 1.0.0

Usage

Begin by creating a Buzz client, you may pass any listener or configuration parameters to it like:

use Buzz\Browser;
use Buzz\Client\Curl;
use Buzz\Listener\CookieListener;

$browser = new Browser();

$client = new Curl();
$client->setMaxRedirects(0);
$browser->setClient($client);

// Create CookieListener
$listener = new CookieListener();
$browser->addListener($listener);

Then create the adapter:

use Http\Adapter\Buzz\Client as BuzzAdapter;
use Http\Message\MessageFactory\GuzzleMessageFactory;

$adapter = new BuzzAdapter($browser, new GuzzleMessageFactory());

Or relying on discovery:

use Http\Adapter\Buzz\Client as BuzzAdapter;

$adapter = new BuzzAdapter($browser);

Be Aware

This adapter violates the Liskov substitution principle in a rare edge case. When the adapter is configured to
use Buzz’ Curl client, it does not send request bodies for request methods such as GET, HEAD and TRACE. A
RequestException will be thrown if this ever happens.

If you need GET request with a body (e.g. for Elasticsearch) you need to use the Buzz FileGetContents client or choose
a different HTTPlug client like Guzzle 6.

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

4.5. Clients & Adapters 29

PHP-HTTP Documentation, Release 1.0.0

4.5.8 CakePHP Adapter (deprecated)

This adapter only implements the PHP-HTTP synchronous interface. This interface has been superseded by PSR-18,
which the CakePHP HTTP client implements directly.

Installation

To install the CakePHP adapter, which will also install CakePHP itself (if it was not yet included in your project), run:

$ composer require php-http/cakephp-adapter

Usage

Begin by creating a CakePHP HTTP client, passing any configuration parameters you like:

use Cake\Http\Client as CakeClient;

$config = [
// Config params

];
$cakeClient = new CakeClient($config);

Then create the adapter:

use Http\Adapter\Cake\Client as CakeAdapter;

$adapter = new CakeAdapter($cakeClient);

Note: The client parameter is optional; if you do not supply it (or set it to null) the adapter will create a default
CakePHP HTTP client without any options.

Or if you installed the discovery layer:

use Http\Adapter\Cake\Client as CakeAdapter;

$adapter = new CakeAdapter($cakeClient);

Warning: The message factory parameter is mandatory if the discovery layer is not installed.

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

• Read more about promises when using asynchronous requests.

30 Chapter 4. Community

https://book.cakephp.org/5.0/en/core-libraries/httpclient.html

PHP-HTTP Documentation, Release 1.0.0

4.5.9 Guzzle5 Adapter (deprecated)

An HTTPlug adapter for the Guzzle 5 HTTP client.

This adapter only implements the PHP-HTTP synchronous interface. This interface has been superseded by PSR-18.

Guzzle 5 is very old and not maintained anymore. We recommend to upgrade to Guzzle version 7.

Installation

To install the Guzzle adapter, which will also install Guzzle itself (if it was not yet included in your project), run:

$ composer require php-http/guzzle5-adapter

Usage

Begin by creating a Guzzle client, passing any configuration parameters you like:

use GuzzleHttp\Client as GuzzleClient;

$config = [
// Config params

];
$guzzle = new GuzzleClient($config);

Then create the adapter:

use Http\Adapter\Guzzle5\Client as GuzzleAdapter;
use Http\Message\MessageFactory\GuzzleMessageFactory;

$adapter = new GuzzleAdapter($guzzle, new GuzzleMessageFactory());

Or if you installed the discovery layer:

use Http\Adapter\Guzzle5\Client as GuzzleAdapter;

$adapter = new GuzzleAdapter($guzzle);

Warning: The message factory parameter is mandatory if the discovery layer is not installed.

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

4.5. Clients & Adapters 31

http://docs.guzzlephp.org/en/5.3/
https://github.com/guzzle/guzzle#version-guidance

PHP-HTTP Documentation, Release 1.0.0

4.5.10 Guzzle 6 Adapter (deprecated)

An HTTPlug adapter for the Guzzle 6 HTTP client.

Guzzle 5 is not maintained anymore. We recommend to upgrade to Guzzle version 7.

Installation

To install the Guzzle adapter, which will also install Guzzle itself (if it was not yet included in your project), run:

$ composer require php-http/guzzle6-adapter

Usage

To create a Guzzle6 adapter you should use the createWithConfig() function. It will let you to pass Guzzle configuration
to the client:

use Http\Adapter\Guzzle6\Client as GuzzleAdapter;

$config = [
'timeout' => 2,
'handler' => //...
// ...

];
$adapter = GuzzleAdapter::createWithConfig($config);

Note: If you want even more control over your Guzzle object, you may give a Guzzle client as first argument to the
adapter’s constructor:

use GuzzleHttp\Client as GuzzleClient;
use Http\Adapter\Guzzle6\Client as GuzzleAdapter;

$config = ['timeout' => 5];
// ...
$guzzle = new GuzzleClient($config);
// ...
$adapter = new GuzzleAdapter($guzzle);

If you pass a Guzzle instance to the adapter, make sure to configure Guzzle to not throw exceptions on HTTP error
status codes, or this adapter will violate PSR-18.

And use it to send synchronous requests:

use GuzzleHttp\Psr7\Request;

$request = new Request('GET', 'http://httpbin.org');

// Returns a Psr\Http\Message\ResponseInterface
$response = $adapter->sendRequest($request);

Or send asynchronous ones:

32 Chapter 4. Community

http://docs.guzzlephp.org/en/6.5/
https://github.com/guzzle/guzzle#version-guidance

PHP-HTTP Documentation, Release 1.0.0

use GuzzleHttp\Psr7\Request;

$request = new Request('GET', 'http://httpbin.org');

// Returns a Http\Promise\Promise
$promise = $adapter->sendAsyncRequest(request);

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

• Read more about promises when using asynchronous requests.

4.5.11 Socket Client (deprecated)

The socket client uses the stream extension from PHP, which is integrated into the core.

This client only implements the PHP-HTTP synchronous interface, which has been superseded by PSR-18. Use one of
the PSR-18 clients instead.

Features

• TCP Socket Domain (tcp://hostname:port)

• UNIX Socket Domain (unix:///path/to/socket.sock)

• TLS / SSL encryption

• Client Certificate (only for PHP > 5.6)

Installation

To install the Socket client, run:

$ composer require php-http/socket-client

This client does not come with a PSR-7 implementation out of the box, so you have to install one as well (for example
Guzzle PSR-7):

$ composer require guzzlehttp/psr7

In order to provide full interoperability, message implementations are accessed through factories. Message factories
for Laminas Diactoros (and its abandoned predecessor Zend Diactoros), Guzzle PSR-7 and Slim PSR-7 are available
in the message component:

$ composer require php-http/message

4.5. Clients & Adapters 33

https://github.com/guzzle/psr7
https://github.com/laminas/laminas-diactoros
https://github.com/zendframework/zend-diactoros
https://github.com/guzzle/psr7
https://github.com/slimphp/Slim-Psr7

PHP-HTTP Documentation, Release 1.0.0

Usage

The Socket client needs a message factory in order to to work:

use Http\Client\Socket\Client;

$options = [];
$client = new Client($messageFactory, $options);

The available options are:

remote_socket Specify the remote socket where the library should send the request to

• Can be a TCP remote: tcp://hostname:port

• Can be a UNIX remote: unix:///path/to/remote.sock

• Do not use a TLS/SSL scheme, this is handle by the SSL option.

• If not set, the client will try to determine it from the request URI or host header.

timeout Timeout in milliseconds for writing request and reading response on the remote

ssl Activate or deactivate SSL/TLS encryption

stream_context_options Custom options for the context of the stream. See PHP stream context options.

stream_context_params Custom parameters for the context of the stream. See PHP stream context pa-
rameters.

write_buffer_size When sending the request we need to buffer the body, this option specify the size of
this buffer, default is 8192, if you are sending big file with your client it may be interesting to have a
bigger value in order to increase performance.

As an example someone may want to pass a client certificate when using the ssl, a valid configuration for this use case
would be:

use Http\Client\Socket\Client;

$options = [
'stream_context_options' => [

'ssl' => [
'local_cert' => '/path/to/my/client-certificate.pem'

]
]

];
$client = new Client($messageFactory, $options);

Warning: This client assumes that the request is compliant with HTTP 2.0, 1.1 or 1.0 standard. So a request
without a Host header, or with a body but without a Content-Length will certainly fail. To make sure all requests
will be sent out correctly, we recommend to use the PluginClient with the following plugins:

• ContentLengthPlugin sets the correct Content-Length header, or decorate the stream to use chunked
encoding

• DecoderPlugin decodes encoding coming from the response (chunked, gzip, deflate and compress)

Read more on plugins

34 Chapter 4. Community

http://php.net/manual/en/context.php
http://php.net/manual/en/context.params.php
http://php.net/manual/en/context.params.php

PHP-HTTP Documentation, Release 1.0.0

Further reading

• Use plugins to customize the way HTTP requests are sent and responses processed by following redirects, adding
Authentication or Cookie headers and more.

• Learn how you can decouple your code from any PSR-7 implementation by using the HTTP factories.

4.5.12 Zend Adapter (deprecated)

An HTTPlug adapter for the Zend HTTP client.

Zend framework meanwhile has been renamed to Laminas, and the client is no longer maintained.

This adapter only implements the PHP-HTTP synchronous interface. This interface has been superseded by PSR-18,
which the Laminas Diactoros implements directly.

Installation

To install the Zend adapter, which will also install Zend itself (if it was not yet included in your project), run:

$ composer require php-http/zend-adapter

4.5.13 Current Clients and Adapters

Name Type Links Stats
php-http/curl-client Client Docs, Repo
php-http/mock-client Client Docs, Repo
symfony/http-client Client Docs, Repo
php-http/artax-adapter Adapter Docs, Repo
php-http/guzzle7-adapter Adapter Docs, Repo
php-http/react-adapter Adapter Docs, Repo

4.5.14 Legacy Clients and Adapters

These are not maintained anymore, but we keep documentation around for now. Please upgrade your applications to
use a maintained client or adapter.

Name Type Links Stats
php-http/socket-client Client Docs, Repo
php-http/buzz-adapter Adapter Docs, Repo
php-http/cakephp-adapter Adapter Docs, Repo
php-http/guzzle5-adapter Adapter Docs, Repo
php-http/guzzle6-adapter Adapter Docs, Repo
php-http/zend-adapter Adapter Docs, Repo

4.5. Clients & Adapters 35

https://docs.laminas.dev/laminas-diactoros/
https://github.com/php-http/curl-client
https://github.com/php-http/curl-client/releases
https://packagist.org/packages/php-http/curl-client
https://github.com/php-http/mock-client
https://github.com/php-http/mock-client/releases
https://packagist.org/packages/php-http/mock-client
https://github.com/symfony/http-client
https://github.com/symfony/http-client/releases
https://packagist.org/packages/symfony/http-client
https://github.com/php-http/artax-adapter
https://github.com/php-http/artax-adapter/releases
https://packagist.org/packages/php-http/artax-adapter
https://github.com/php-http/guzzle7-adapter
https://github.com/php-http/guzzle7-adapter/releases
https://packagist.org/packages/php-http/guzzle7-adapter
https://github.com/php-http/react-adapter
https://github.com/php-http/react-adapter/releases
https://packagist.org/packages/php-http/react-adapter
https://github.com/php-http/socket-client
https://github.com/php-http/socket-client/releases
https://packagist.org/packages/php-http/socket-client
https://github.com/php-http/buzz-adapter
https://github.com/php-http/buzz-adapter/releases
https://packagist.org/packages/php-http/buzz-adapter
https://github.com/php-http/cakephp-adapter
https://github.com/php-http/cakephp-adapter/releases
https://packagist.org/packages/php-http/cakephp-adapter
https://github.com/php-http/guzzle5-adapter
https://github.com/php-http/guzzle5-adapter/releases
https://packagist.org/packages/php-http/guzzle5-adapter
https://github.com/php-http/guzzle6-adapter
https://github.com/php-http/guzzle6-adapter/releases
https://packagist.org/packages/php-http/guzzle6-adapter
https://github.com/php-http/zend-adapter
https://github.com/php-http/zend-adapter/releases
https://packagist.org/packages/php-http/zend-adapter

PHP-HTTP Documentation, Release 1.0.0

4.5.15 Composer Virtual Packages

Virtual packages are a way to specify the dependency on an implementation of an interface-only repository without forc-
ing a specific implementation. For HTTPlug, the virtual packages are called php-http/client-implementation (though
you should be using psr/http-client-implementation to use PSR-18) and php-http/async-client-implementation.

There is no library registered with those names. However, all client implementations (including client adapters) for
HTTPlug use the provide section to tell composer that they do provide the client-implementation.

4.6 Plugins

The plugin system allows to wrap a Client and add some processing logic prior to and/or after sending the actual request
or you can even start a completely new request. This gives you full control over what happens in your workflow.

4.6.1 Introduction

Install

The plugin client and the core plugins are available in the php-http/client-common package:

$ composer require php-http/client-common

New in version 1.1: The plugins were moved to the clients-common package in version 1.1. If you work with version
1.0, you need to require the separate php-http/plugins package and the namespace is Http\Client\Plugin instead of
Http\Client\Common

How it works

In the plugin package, you can find the following content:

• the PluginClient itself which acts as a wrapper around any kind of HTTP client (sync/async);

• the Plugin interface;

• a set of core plugins (see the full list in the left side navigation).

The PluginClient accepts an HTTP client implementation and an array of plugins. Let’s see an example:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\RetryPlugin;
use Http\Client\Common\Plugin\RedirectPlugin;

$retryPlugin = new RetryPlugin();
$redirectPlugin = new RedirectPlugin();

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[

$retryPlugin,
$redirectPlugin,

]
);

36 Chapter 4. Community

https://packagist.org/providers/php-http/client-implementation
https://packagist.org/providers/psr/http-client-implementation
https://packagist.org/providers/php-http/async-client-implementation
https://github.com/php-http/client-common

PHP-HTTP Documentation, Release 1.0.0

The PluginClient accepts and implements both Http\Client\HttpClient and Http\Client\
HttpAsyncClient, so you can use both ways to send a request. In case the passed client implements only
one of these interfaces, the PluginClient “emulates” the other behavior as a fallback.

It is important to note that the order of plugins matters. During the request, plugins are executed in the order they have
been specified in the constructor, from first to last. Once a response has been received, the plugins are called again in
reversed order, from last to first.

For our previous example, the execution chain will look like this:

Request ---> PluginClient ---> RetryPlugin ---> RedirectPlugin ---> HttpClient ----
|␣

→˓(processing call)
Response <--- PluginClient <--- RetryPlugin <--- RedirectPlugin <--- HttpClient <---

In order to achieve the intended behavior in the global process, you need to pay attention to what each plugin does and
define the correct order accordingly.

For example, the RetryPlugin should probably be at the end of the chain to keep the retry process as short as possible.
However, if one of the other plugins is doing a fragile operation that might need a retry, place the retry plugin before
that.

The recommended way to order plugins is the following:

1. Plugins that modify the request should be at the beginning (like Authentication or Cookie Plugin);

2. Plugins which intervene in the workflow should be in the “middle” (like Retry or Redirect Plugin);

3. Plugins which log information should be last (like Logger or History Plugin).

Note: There can be exceptions to these rules. For example, for security reasons you might not want to log the
authentication information (like Authorization header) and choose to put the Authentication Plugin after the Logger
Plugin.

Configuration Options

The PluginClient accepts an array of configuration options to tweak its behavior.

max_restarts: int (default 10)

To prevent issues with faulty plugins or endless redirects, the PluginClient injects a security check to the start of
the plugin chain. If the same request is restarted more than specified by that value, execution is aborted and an error is
raised.

debug_plugins: array of Plugin

The debug plugins are injected between each normal plugin. This can be used to log the changes each plugin does on
the request and response objects.

4.6. Plugins 37

PHP-HTTP Documentation, Release 1.0.0

Libraries that Require Plugins

When writing a library based on HTTPlug, you might require specific plugins to be active. The recommended way
for doing this is to provide a factory method for the PluginClient that library users should use. This allows them to
inject their own plugins or configure a different client. For example:

$myApiClient = new My\Api\Client('https://api.example.org', My\Api\
→˓HttpClientFactory::create('john', 's3cr3t'));

use Http\Client\HttpClient;
use Http\Client\Common\Plugin;
use Http\Client\Common\Plugin\AuthenticationPlugin;
use Http\Client\Common\Plugin\ErrorPlugin;
use Http\Discovery\HttpClientDiscovery;

class HttpClientFactory
{

/**
* Build the HTTP client to talk with the API.
*
* @param string $user Username for the application on the API
* @param string $pass Password for the application on the API
* @param Plugin[] $plugins List of additional plugins to use
* @param HttpClient $client Base HTTP client
*
* @return HttpClient
*/
public static function create($user, $pass, array $plugins = [], HttpClient $client␣

→˓= null)
{

if (!$client) {
$client = HttpClientDiscovery::find();

}
$plugins[] = new ErrorPlugin();
$plugins[] = new AuthenticationPlugin(

// This API has it own authentication algorithm
new ApiAuthentication(Client::AUTH_OAUTH_TOKEN, $user, $pass)

);
return new PluginClient($client, $plugins);

}
}

4.6.2 Building Custom Plugins

When writing your own Plugin, you need to be aware that the Plugin Client is async first. This means that every plugin
must be written with Promises. More about this later.

Each plugin must implement the Http\Client\Common\Plugin interface.

New in version 1.1: The plugins were moved to the client-common package in version 1.1. If you work with version 1.0,
the interface is called Http\Client\Plugin\Plugin and you need to require the separate php-http/plugins package.
The old interface will keep extending Http\Client\Common\Plugin, but relying on it is deprecated.

This interface defines the handleRequest method that allows to modify behavior of the call:

38 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

/**
* Handles the request and returns the response coming from the next callable.
*
* @param RequestInterface $request Request to use.
* @param callable $next Callback to call to have the request, it muse have␣
→˓the request as it first argument.
* @param callable $first First element in the plugin chain, used to to␣
→˓restart a request from the beginning.
*
* @return Promise
*/
public function handleRequest(RequestInterface $request, callable $next, callable
→˓$first);

The $request comes from an upstream plugin or PluginClient itself. You can replace it and pass a new version
downstream if you need.

The $next callable is the next plugin in the execution chain. When you need to call it, you must pass the $request as
the first argument of this callable.

For example a simple plugin setting a header would look like this:

public function handleRequest(RequestInterface $request, callable $next, callable $first)
{

$newRequest = $request->withHeader('MyHeader', 'MyValue');

return $next($newRequest);
}

The $first callable is the first plugin in the chain. It allows you to completely reboot the execution chain, or send
another request if needed, while still going through all the defined plugins. Like in case of the $next callable, you
must pass the $request as the first argument:

public function handleRequest(RequestInterface $request, callable $next, callable $first)
{

if ($someCondition) {
$newRequest = new Request();
$promise = $first($newRequest);

// Use the promise to do some jobs ...
}

return $next($request);
}

Warning: In this example the condition is not superfluous: you need to have some way to not call the $first
callable each time or you will end up in an infinite execution loop.

The $next and $first callables will return a Promise. You can manipulate the Psr\Http\Message\
ResponseInterface or the Http\Client\Exception by using the then method of the promise:

4.6. Plugins 39

PHP-HTTP Documentation, Release 1.0.0

public function handleRequest(RequestInterface $request, callable $next, callable $first)
{

$newRequest = $request->withHeader('MyHeader', 'MyValue');

return $next($request)->then(function (ResponseInterface $response) {
return $response->withHeader('MyResponseHeader', 'value');

}, function (\Http\Client\Exception $exception) {
echo $exception->getMessage();

throw $exception;
});

}

Warning: Contract for the Http\Promise\Promise is temporary until a PSR is released. Once it is out, we will
use this PSR in HTTPlug and deprecate the old contract.

Warning: If a plugin throws an exception that does not implement Http\Client\Exception it will break the
plugin chain.

To better understand the whole process check existing implementations in the client-common package.

Contributing Your Plugins to PHP-HTTP

We are open to contributions. If the plugin is of general interest, not too complex and does not have dependencies, the
best is to do a Pull Request to php-http/client-common. Please see the contribution guide. We don’t promise that
every plugin gets merged into the core. We need to keep the core as small as possible with only the most widely used
plugins to keep it maintainable.

The alternative is providing your plugins in your own repository. Please let us know when you do, we would like to
add a list of existing third party plugins to the list of plugins.

4.6.3 Seekable Body Plugins

RequestSeekableBodyPlugin and ResponseSeekableBodyPlugin ensure that body used in request and response
is always seekable. Use this plugin if you want plugins to read the stream and then be able to rewind it:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\RequestSeekableBodyPlugin;
use Http\Client\Common\Plugin\ResponseSeekableBodyPlugin;

$options = [
'use_file_buffer' => true,
'memory_buffer_size' => 2097152,

];
$requestSeekableBodyPlugin = new RequestSeekableBodyPlugin($options);
$responseSeekableBodyPlugin = new ResponseSeekableBodyPlugin($options);

(continues on next page)

40 Chapter 4. Community

https://groups.google.com/forum/?fromgroups#!topic/php-fig/wzQWpLvNSjs
https://github.com/php-http/client-common

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$requestSeekableBodyPlugin, $responseSeekableBodyPlugin]

);

Those plugins support the following options (which are passed to the BufferedStream class):

• use_file_buffer: Whether it should use a temporary file to buffer the body of a stream if it’s too big

• memory_buffer_size: Maximum memory to use for buffering the stream before it switch to a file

RequestSeekableBodyPlugin should be the first of your plugins, then the following plugins can seek in the request
body (i.e. for logging purpose). ResponseSeekableBodyPlugin should be the last plugin, then previous plugins can
seek response body.

4.6.4 Authentication Plugin

This plugin uses the authentication component from php-http/message to authenticate requests sent through the
client:

use Http\Discovery\HttpClientDiscovery;
use Http\Message\Authentication\BasicAuth;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\AuthenticationPlugin;

$authentication = new BasicAuth('username', 'password');
$authenticationPlugin = new AuthenticationPlugin($authentication);

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$authenticationPlugin]

);

Check the authentication component documentation for the list of available authentication methods.

4.6.5 Cache Plugin

Install

$ composer require php-http/cache-plugin

Usage

The CachePlugin allows you to cache responses from the server. It can use any PSR-6 compatible caching engine.
By default, the plugin respects the cache control headers from the server as specified in RFC 7234. It needs a PSR-17
StreamFactoryInterface and a PSR-6 implementation:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\CachePlugin;

(continues on next page)

4.6. Plugins 41

https://tools.ietf.org/html/rfc7234.html
http://www.php-fig.org/psr/psr-17/
http://www.php-fig.org/psr/psr-6/

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

/** @var \Psr\Cache\CacheItemPoolInterface $pool */
$pool = ...
/** @var \Psr\Http\Message\StreamFactoryInterface $streamFactory */
$streamFactory = ...

$options = [];
$cachePlugin = new CachePlugin($pool, $streamFactory, $options);

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$cachePlugin]

);

The CachePlugin has also 2 factory methods to easily set up the plugin by caching type. See the example below.

// This will allow caching responses with the 'private' and/or 'no-store' cache directives
$cachePlugin = CachePlugin::clientCache($pool, $streamFactory, $options);

// Returns a cache plugin with the current default behavior
$cachePlugin = CachePlugin::serverCache($pool, $streamFactory, $options);

Note: The two factory methods have been added in version 1.3.0.

Options

The third parameter to the CachePlugin constructor takes an array of options. The available options are:

Name Default value Description
default_ttl 0 The default max age of a Response
respect_cache_headerstrue Whether we should care about cache headers

or not * This option is deprecated. Use re-
spect_response_cache_directives

hash_algo sha1 The hashing algorithm to use when generating cache keys
cache_lifetime 30 days The minimum time we should store a cache item
methods ['GET', 'HEAD'] Which request methods to cache
respect_response_cache_directives['no-cache',

'private', 'max-age',
'no-store']

A list of cache directives to respect when caching responses

cache_key_generatornew SimpleGenerator() A class implementing CacheKeyGenerator to generate a
PSR-6 cache key.

cache_listeners [] A array of classes implementing CacheListener to act on
a response with information on its cache status.

blacklisted_paths [] A array of regular expressions to defined paths, that shall
not be cached.

Note: A HTTP response may have expired but it is still in cache. If so, headers like If-Modified-Since and
If-None-Match are added to the HTTP request to allow the server answer with 304 status code. When a 304 response

42 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

is received we update the CacheItem and save it again for at least cache_lifetime.

Using these options together you can control how your responses should be cached. By default, responses with no
cache control headers are not cached. If you want a default cache lifetime if the server specifies no max-age, use:

$options = [
'default_ttl' => 42, // cache lifetime time in seconds

];

You can tell the plugin to completely ignore the cache control headers from the server and force caching the response
for the default time to live. The options below will cache all responses for one hour:

$options = [
'default_ttl' => 3600, // cache for one hour
'respect_response_cache_directives' => [],

];

Generating a cache key

You may define a method how the PSR-6 cache key should be generated. The default generator is SimpleGenerator
which is using the request method, URI and body of the request. The cache plugin does also include a
HeaderCacheKeyGenerator which allow you to specify what HTTP header you want include in the cache key.

Controlling cache listeners

One or more classes implementing CacheListener can be added through cache_listeners. These classes receive a
notification on whether a request was a cache hit or miss, and can optionally mutate the response based on those signals.
As an example, adding the provided AddHeaderCacheListener will mutate the response, adding an X-Cache header
with a value HIT or MISS, which can be useful in debugging.

Semantics of null values

Setting null to the options cache_lifetime or default_ttl means “Store this as long as you can (forever)”. This
could be a great thing when you requesting a pay-per-request API (e.g. GoogleTranslate).

Store a response as long the cache implementation allows:

$options = [
'default_ttl' => null,
'respect_response_cache_directives' => [],
'cache_lifetime' => null,

];

Ask the server if the response is valid at most ever hour. Store the cache item forever:

$options = [
'default_ttl' => 3600,
'respect_response_cache_directives' => [],
'cache_lifetime' => null,

];

4.6. Plugins 43

PHP-HTTP Documentation, Release 1.0.0

Ask the server if the response is valid at most ever hour. If the response has not been used within one year it will be
removed from the cache:

$options = [
'default_ttl' => 3600,
'respect_response_cache_directives' => [],
'cache_lifetime' => 86400*365, // one year

];

Caching of different request methods

Most of the time you should not change the methods option. However if you are working for example with HTTPlug
based SOAP client you might want to additionally enable caching of POST requests:

$options = [
'methods' => ['GET', 'HEAD', 'POST'],

];

The methods setting overrides the defaults. If you want to keep caching GET and HEAD requests, you need to include
them. You can specify any uppercase request method which conforms to RFC 7230.

Note: If your system has both normal and SOAP clients you need to use two different PluginClient instances.
SOAP client should use PluginClient with POST caching enabled and normal client with POST caching disabled.

Cache Control Handling

By default this plugin does not cache responses with no-store, no-cache or private instructions. Use
CachePlugin::clientCache($pool, $streamFactory, $options); to cache no-store or private re-
sponses or change the respect_response_cache_directives option to your needs.

It does store responses with cookies or a Set-Cookie header. Be careful with the order of your plugins.

4.6.6 Content-Length Plugin

The ContentLengthPlugin sets the correct Content-Length header value based on the size of the body stream of
the request. This helps HTTP servers to handle the request:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\ContentLengthPlugin;

$contentLengthPlugin = new ContentLengthPlugin();

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$contentLengthPlugin]

);

If the size of the stream can not be determined, the plugin sets the Encoding header to chunked, as defined in RFC
7230#section-4.1

44 Chapter 4. Community

https://tools.ietf.org/html/rfc7230.html
https://tools.ietf.org/html/rfc7230.html#section-4.1
https://tools.ietf.org/html/rfc7230.html#section-4.1

PHP-HTTP Documentation, Release 1.0.0

This is useful when you want to transfer data of unknown size to an HTTP application without consuming memory.

As an example, let’s say you want to send a tar archive of the current directory to an API. Normally you would end up
doing this in 2 steps, first saving the result of the tar archive into a file or into the memory of PHP with a variable, then
sending this content with an HTTP Request.

With this plugin you can achieve this behavior without doing the first step:

proc_open("/usr/bin/env tar c .", [["pipe", "r"], ["pipe", "w"], ["pipe", "w"]], $pipes,
→˓"/path/to/directory");
$tarResource = $pipes[1];

$request = MessageFactoryDiscovery::find()->createRequest('POST', '/url/to/api/endpoint',
→˓ [], $tarResource);
$response = $pluginClient->sendRequest($request);

In this case the tar output is directly streamed to the server without using memory on the PHP side.

4.6.7 Content-Type Plugin

The ContentTypePlugin sets the correct Content-Type header value based on the content of the body stream of
the request. This helps HTTP servers to handle the request:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\ContentTypePlugin;

$contentTypePlugin = new ContentTypePlugin();

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$contentTypePlugin]

);

For now, the plugin can only detect JSON or XML content. If the content of the stream can not be determined, the
plugin does nothing.

Options

skip_detection: boolean (default: false)

When set to true, content type detection will be performed only if the body request content size is under the size_limit
parameter value.

size_limit: int (default: a little bit over 15Mb)

Determine the size stream limit for which the detection as to be skipped if skip_detection is true.

4.6. Plugins 45

PHP-HTTP Documentation, Release 1.0.0

4.6.8 Cookie Plugin

The CookiePlugin allow you to store cookies in a CookieJar and reuse them on consequent requests according to
RFC 6265#section-4 specification:

use Http\Discovery\HttpClientDiscovery;
use Http\Message\CookieJar;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\CookiePlugin;

$cookiePlugin = new CookiePlugin(new CookieJar());

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$cookiePlugin]

);

4.6.9 Decoder Plugin

The DecoderPlugin decodes the body of the response with filters coming from the Transfer-Encoding or
Content-Encoding headers:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\DecoderPlugin;

$decoderPlugin = new DecoderPlugin();

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$decoderPlugin]

);

The plugin can handle the following encodings:

• chunked: Decode a stream with a chunked encoding (no size in the Content-Length header of the response)

• compress: Decode a stream encoded with the compress encoding according to RFC 1950

• deflate: Decode a stream encoded with the inflate encoding according to RFC 1951

• gzip: Decode a stream encoded with the gzip encoding according to RFC 1952

You can also use the decoder plugin to decode only the Transfer-Encoding header and not the Content-Encoding
one by setting the use_content_encoding configuration option to false:

$decoderPlugin = new DecoderPlugin(['use_content_encoding' => false]);

Not decoding content is useful when you don’t want to get the encoded response body, or acting as a proxy but still be
able to decode message from the Transfer-Encoding header value.

46 Chapter 4. Community

https://tools.ietf.org/html/rfc6265.html#section-4
https://tools.ietf.org/html/rfc1950.html
https://tools.ietf.org/html/rfc1951.html
https://tools.ietf.org/html/rfc1952.html

PHP-HTTP Documentation, Release 1.0.0

4.6.10 Error Plugin

The ErrorPlugin transforms responses with HTTP error status codes into exceptions:

• 400-499 status code are transformed into Http\Client\Common\Exception\ClientErrorException;

• 500-599 status code are transformed into Http\Client\Common\Exception\ServerErrorException

Warning: Throwing an exception on a valid response violates the PSR-18 specification. This plugin is provided
as a convenience when writing a small application. When providing a client to a third party library, this plugin must
not be included, or the third party library will have problems with error handling.

Both exceptions extend the Http\Client\Exception\HttpException class, so you can fetch the request and the
response coming from them:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\ErrorPlugin;
use Http\Client\Common\Exception\ClientErrorException;

$errorPlugin = new ErrorPlugin();

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$errorPlugin]

);

...

try {
$response = $pluginClient->sendRequest($request);

} catch (ClientErrorException $e) {
if ($e->getResponse()->getStatusCode() == 404) {

// Something has not been found
}

}

The error plugin is intended for when an application operates with the client directly. When writing a library around
an API, the best practice is to have the client convert responses into domain objects, and transform HTTP errors into
meaningful domain exceptions. In that scenario, the ErrorPlugin is not needed. It is more efficient to check the HTTP
status codes yourself than throwing and catching exceptions.

If your application handles responses with 4xx status codes, but needs exceptions for 5xx status codes only, you can set
the option only_server_exception to true:

$errorPlugin = new ErrorPlugin(['only_server_exception' => true]);

4.6. Plugins 47

PHP-HTTP Documentation, Release 1.0.0

4.6.11 Header Plugins

Header plugins are useful to manage request headers. Many operations are possible with the provided plugins.

Default Headers Values

The plugin HeaderDefaultsPlugin allows you to define default values for given headers. If a header is not set, it
will be added. However, if the header is already present, the request is left unchanged:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\HeaderDefaultsPlugin;

$defaultUserAgent = 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:40.0) Gecko/20100101 Firefox/
→˓40.1';

$headerDefaultsPlugin = new HeaderDefaultsPlugin([
'User-Agent' => $defaultUserAgent

]);

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$headerDefaultsPlugin]

);

Mandatory Headers Values

The plugin HeaderSetPlugin allows you to fix values of given headers. That means that any request passing through
this plugin will be set to the specified value. Existing values of the header will be overwritten.

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\HeaderSetPlugin;

$userAgent = 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:40.0) Gecko/20100101 Firefox/40.1';

$headerSetPlugin = new HeaderSetPlugin([
'User-Agent' => $userAgent,
'Accept' => 'application/json'

]);

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$headerSetPlugin]

);

48 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

Removing Headers

The plugin HeaderRemovePlugin allows you to remove headers from the request.

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\HeaderRemovePlugin;

$headerRemovePlugin = new HeaderRemovePlugin([
'User-Agent'

]);

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$headerRemovePlugin]

);

Appending Header Values

The plugin HeaderAppendPlugin allows you to add headers. The header will be created if not existing yet. If the
header already exists, the value will be appended to the list of values for this header.

Note: The use cases for this plugin are limited. One real world example of headers that can have multiple values is
“Forwarded”.

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\HeaderAppendPlugin;

$myIp = '100.100.100.100';

$headerAppendPlugin = new HeaderAppendPlugin([
'Forwarded' => 'for=' . $myIp

]);

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$headerAppendPlugin]

);

Mixing operations

Different header plugins can be mixed together to achieve different behaviors and you can use the same plugin for
identical operations.

The following example will force the User-Agent and the Accept header values while removing the Cookie header:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\HeaderSetPlugin;

(continues on next page)

4.6. Plugins 49

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

use Http\Client\Common\Plugin\HeaderRemovePlugin;

$userAgent = 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:40.0) Gecko/20100101 Firefox/40.1';

$headerSetPlugin = new HeaderSetPlugin([
'User-Agent' => $userAgent,
'Accept' => 'application/json'

]);

$headerRemovePlugin = new HeaderRemovePlugin([
'Cookie'

]);

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[

$headerSetPlugin,
$headerRemovePlugin

]
);

4.6.12 History Plugin

The HistoryPlugin notifies a Http\Client\Common\Plugin\Journal of all successful and failed calls:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\HistoryPlugin;

$historyPlugin = new HistoryPlugin(new \My\Journal\Implementation());

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$historyPlugin]

);

As an example, HttplugBundle uses this plugin to collect responses and exceptions associated with requests for the
debug toolbar.

This plugin only collects data after resolution. For logging purposes, it is recommended to use the LoggerPlugin
instead, which logs events as they occur.

50 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

4.6.13 Logger Plugin

Install

$ composer require php-http/logger-plugin

Usage

The LoggerPlugin converts requests, responses and exceptions to strings and logs them with a PSR3 compliant logger:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\LoggerPlugin;
use Monolog\Logger;

$loggerPlugin = new LoggerPlugin(new Logger('http'));

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$loggerPlugin]

);

The log level for exceptions is error, the request and responses without exceptions are logged at level info. Request
and response/errors can be correlated by looking at the uid of the log context. If you don’t want to normally log
requests, you can set the logger to normally only log error but use the Fingerscrossed logger of Monolog to also
log the request in case an exception is encountered.

By default it uses Http\Message\Formatter\SimpleFormatter to format the request or the response into a string.
You can use any formatter implementing the Http\Message\Formatter interface:

$formatter = new \My\Formatter\Implementation();

$loggerPlugin = new LoggerPlugin(new Logger('http'), $formatter);

4.6.14 Query plugin

Default Query parameters

The plugin QueryDefaultsPlugin allows you to define default values for query parameters. If a query parameter is
not set, it will be added. However, if the query parameter is already present, the request is left unchanged. Names and
values must not be URL encoded as this plugin will encode them:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\QueryDefaultsPlugin;

$queryDefaultsPlugin = new QueryDefaultsPlugin([
'locale' => 'en'

]);

$pluginClient = new PluginClient(
(continues on next page)

4.6. Plugins 51

http://www.php-fig.org/psr/psr-3/

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

HttpClientDiscovery::find(),
[$queryDefaultsPlugin]

);

4.6.15 Redirect Plugin

The RedirectPlugin automatically follows redirection answers from a server. If the plugin detects a redirection, it
creates a request to the target URL and restarts the plugin chain.

The plugin attempts to detect circular redirects and will abort when such a redirect is encountered. Note that a faulty
server appending something on each request is not detected. This situation is caught by the plugin client itself and can
be controlled through the max_restarts: int (default 10) setting.

Initiate the redirect plugin as follows:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\RedirectPlugin;

$redirectPlugin = new RedirectPlugin();

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$redirectPlugin]

);

Warning: Following redirects can increase the robustness of your application. But if you build some sort of API
client, you want to at least keep an eye on the log files. Having your application follow redirects instead of going to
the right end point directly makes your application slower and increases the load on both server and client.

Note: Depending on the status code, redirecting should change POST/PUT requests to GET requests. This plugin
implements this behavior - except if you set the strict option to true, as explained below. It removes the request body
if the method changes, see stream_factory below.

To understand the exact semantics of which HTTP status changes the method and which not, have a look at the config-
uration in the source code of the RedirectPlugin class.

Options

preserve_header: boolean|string[] (default: true)

When set to true, all headers are kept for the next request. false means all headers are removed. An array of strings
is treated as a whitelist of header names to keep from the original request.

use_default_for_multiple: bool (default: true)

Whether to follow the default direction on the multiple redirection status code 300. If set to false, a status of 300 will
raise the Http\Client\Common\Exception\MultipleRedirectionException.

strict: bool (default: false)

52 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

When set to true, 300, 301 and 302 status codes will not modify original request’s method and body on consecutive
requests. E. g. POST redirect requests are sent as POST requests instead of POST redirect requests are sent as GET
requests.

stream_factory: StreamFactoryInterface (default: auto discovered)

The PSR-17 stream factory is used to create an empty stream for removing the body of the request on redirection. To
keep the body on all redirections, set stream_factory to null. The stream factory is discovered if either php-http/
discovery is installed and provides a factory, or nyholm/psr7 or a new enough version of guzzlehttp/psr7 are
installed. If you only have other implementations, you need to provide the factory in stream_factory.

If no factory is found, the redirect plugin does not remove the body on redirection.

4.6.16 Request URI Manipulations

Request URI manipulations can be done thanks to several plugins:

• AddHostPlugin: Set host, scheme and port. Depending on configuration, the host is overwritten in every request
or only set if not yet defined in the request.

• AddPathPlugin: Prefix the request path with a path, leaving the host information untouched.

• BaseUriPlugin: It’s a combination of AddHostPlugin and AddPathPlugin.

Each plugin uses the UriInterface to build the base request:

use Http\Discovery\HttpClientDiscovery;
use Http\Discovery\UriFactoryDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\BaseUriPlugin;

$plugin = new BaseUriPlugin(UriFactoryDiscovery::find()->createUri('https://domain.
→˓com:8000/api'), [
// Always replace the host, even if this one is provided on the sent request.␣

→˓Available for AddHostPlugin.
'replace' => true,

]));

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$plugin]

);

The AddPathPlugin will check if the path prefix is already present on the URI. This will break for the edge case when
the prefix is repeated. For example, if https://example.com/api/api/foo is a valid URI on the server and the
configured prefix is /api, the request to /api/foo is not rewritten.

For further details, please see the phpdoc on the AddPathPlugin source code.

No solution fits all use cases. This implementation works fine for the common use cases. If you have a specific situation
where this is not the right thing, you can build a custom plugin that does exactly what you need.

4.6. Plugins 53

PHP-HTTP Documentation, Release 1.0.0

4.6.17 Retry Plugin

The RetryPlugin can automatically attempt to re-send a request that failed, to work around unreliable connections
and servers. It re-sends the request when an exception is thrown, unless the exception is a HttpException for a status
code in the 5xx server error range. Since version 2.0, responses with status codes in the 5xx range are also retried.
Each retry attempt is delayed by an exponential backoff time.

See below for how to configure that behavior.

Warning: You should keep an eye on retried requests, as they add overhead. If a request fails due to a client side
mistake, retrying is only a waste of time and resources.

Contrary to the Redirect Plugin, the retry plugin does not restart the chain but simply tries again from the current
position.

Async

This plugin is not fully compatible with asynchronous behavior, as the wait between retries is done with a blocking call
to a sleep function.

Options

retries: int (default: 1)

Number of retry attempts to make before giving up.

error_response_decider: callable (default behavior: retry if status code is in 5xx range)

A callback function that receives the request and response to decide whether the request should be retried.

exception_decider: callable (default behavior: retry if the exception is not an HttpException or status code is in
5xx range)

A callback function that receives a request and an exception to decide after a failure whether the request should be
retried.

error_response_delay: callable (default behavior: exponential backoff)

A callback that receives a request, a response, the current number of retries and returns how many microseconds we
should wait before trying again.

exception_delay: callable (default behavior: exponential backoff)

A callback that receives a request, an exception, the current number of retries and returns how many microseconds we
should wait before trying again.

54 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

Interaction with Exceptions

If you use the ErrorPlugin, you should place it after the RetryPlugin in the plugin chain:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\ErrorPlugin;
use Http\Client\Common\Plugin\RetryPlugin;

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[

new RetryPlugin(),
new ErrorPlugin(),

]
);

4.6.18 Stopwatch Plugin

Install

$ composer require php-http/stopwatch-plugin

Usage

The StopwatchPlugin records the duration of HTTP requests with a Symfony\Component\Stopwatch\Stopwatch
instance:

use Http\Discovery\HttpClientDiscovery;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\StopwatchPlugin;
use Symfony\Component\Stopwatch\Stopwatch;

$stopwatch = new Stopwatch();

$stopwatchPlugin = new StopwatchPlugin($stopwatch);

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$stopwatchPlugin]

);

// ...

foreach ($stopwatch->getSections() as $section) {
foreach ($section->getEvents() as $name => $event) {

echo sprintf('Request %s took %s ms and used %s bytes of memory', $name, $event->
→˓getDuration(), $event->getMemory());

}
}

4.6. Plugins 55

PHP-HTTP Documentation, Release 1.0.0

Warning: The results of the stop watch will be unreliable when using an asynchronous client. Execution time can
be longer than it really was, depending on when the status was checked again, and memory consumption will be
mixed up with other code that was executed while waiting for the response.

4.6.19 VCR Plugin - Record and Replay Responses

The VCR plugins allow you to record & replay HTTP responses. It’s very useful for test purpose (using production-like
predictable fixtures and avoid making actual HTTP request). You can also use it during your development cycle, when
the endpoint you’re contacting is not ready yet.

Unlike the php-http/mock-client, where you have to manually define responses, the responses are automatically gen-
erated from the previously recorded ones.

Install

$ composer require --dev php-http/vcr-plugin

Usage

To record or replay a response, you will need two components, a naming strategy and a recorder.

The naming strategy

The naming strategy turn a request into a deterministic and unique identifier. The identifier must be safe to use with a
file system. The plugin provide a default naming strategy, the PathNamingStrategy. You can define two options:

• hash_headers: the list of header(s) that make the request unique (Ex: ‘Authorization’). The name & content of
the header will be hashed to generate a unique signature. By default no header is used.

• hash_body_methods: indicate for which request methods the body makes requests distinct. (Default: PUT,
POST, PATCH)

This naming strategy will turn a GET request to https://example.org/my-path to the example.org_GET_my-path
name, and optionally add hashes if the request contain a header defined in the options, or if the method is not idempotent.

To create your own strategy, you need to create a class implementing Http\Client\Plugin\Vcr\NamingStrategy\
NamingStrategyInterface.

The recorder

The recorder records and replays responses. The plugin provides two recorders:

• FilesystemRecorder: Saves the response on your file system using Symfony’s filesystem component and
Guzzle PSR7 library.

• InMemoryRecorder: Saves the response in memory. Response will be lost at the end of the running process

To create your own recorder, you need to create a class implementing the following interfaces:

• Http\Client\Plugin\Vcr\Recorder\RecorderInterface used by the RecordPlugin.

• Http\Client\Plugin\Vcr\Recorder\PlayerInterface used by the ReplayPlugin.

56 Chapter 4. Community

https://example.org/my-path
https://symfony.com/doc/current/components/filesystem.html
https://github.com/guzzle/psr7

PHP-HTTP Documentation, Release 1.0.0

The plugins

There are two plugins, one to record responses, the other to replay them.

• Http\Client\Plugin\Vcr\ReplayPlugin, use a PlayerInterface to replay previously recorded re-
sponses.

• Http\Client\Plugin\Vcr\RecordPlugin, use a RecorderInterface instance to record the responses,

Both plugins add a response header to indicate either under which name the response has been stored (RecordPlugin,
X-VCR-RECORD header), or which response name has been used to replay the request (ReplayPlugin, X-VCR-REPLAYED
header).

If you plan on using both plugins at the same time (Replay or Record), the ReplayPlugin must always come first.
Please also note that by default, the ReplayPlugin throws an exception when it cannot replay a request. If you want the
plugin to continue the request (possibly to the actual server), set the third constructor argument to false (See example
below).

Example

<?php

use Http\Client\Common\PluginClient;
use Http\Client\Plugin\Vcr\NamingStrategy\PathNamingStrategy;
use Http\Client\Plugin\Vcr\Recorder\FilesystemRecorder;
use Http\Client\Plugin\Vcr\RecordPlugin;
use Http\Client\Plugin\Vcr\ReplayPlugin;
use Http\Discovery\HttpClientDiscovery;

$namingStrategy = new PathNamingStrategy([
'hash_headers' => ['X-Custom-Header'], // None by default
'hash_body_methods' => ['POST'], // Default: PUT, POST, PATCH

]);
$recorder = new FilesystemRecorder('some/dir/in/vcs'); // You can use InMemoryRecorder␣
→˓as well

// To record responses:
$record = new RecordPlugin($namingStrategy, $recorder);

// To replay responses:
// Third argument prevent the plugin from throwing an exception when a request cannot be␣
→˓replayed
$replay = new ReplayPlugin($namingStrategy, $recorder, false);

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[$replay, $record] // Replay should always go first

);

/** @var \Psr\Http\Message\RequestInterface $request */
$request = new MyRequest('GET', 'https://httplug.io');

// Will be recorded in "some/dir/in/vcs"
$client->sendRequest($request);

(continues on next page)

4.6. Plugins 57

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

// Will be replayed from "some/dir/in/vcs"
$client->sendRequest($request);

4.7 Framework Integrations

HTTPlug provides the following framework integrations:

4.7.1 Symfony Bundle

This bundle integrates HTTPlug with the Symfony framework. The bundle helps to register services for all your clients
and makes sure all the configuration is in one place. The bundle also features a profiling plugin with information about
your requests.

This guide explains how to configure HTTPlug in the Symfony framework. See the HTTPlug Tutorial for examples
how to use HTTPlug in general.

Installation

HTTPlug works with any HTTP client implementation that provides PSR-18 or a HTTPlug adapter. The flex recipe
installs the php-http curl client. See Clients & Adapters for a list of clients known to work with the bundle.

You can find all available configuration at the full configuration page.

Using Symfony Flex

HttplugBundle has a Symfony Flex recipe that will set it up with default configuration:

$ composer require php-http/httplug-bundle

Without Symfony Flex

Install the HTTPlug bundle with composer and enable it in your AppKernel.php.

$ composer require php-http/httplug-bundle [some-adapter?]

If you already added the HTTPlug client requirement to your project, then you only need to add php-http/
httplug-bundle. Otherwise, you also need to specify an HTTP client to use - see Clients & Adapters for a list
of available clients.

58 Chapter 4. Community

https://symfony.com/doc/current/setup/flex.html

PHP-HTTP Documentation, Release 1.0.0

Activate Bundle in Symfony 4 and newer

// config/bundles.php
return [

...
Http\HttplugBundle\HttplugBundle::class => ['all' => true],

];

Activate Bundle in Symfony 3

// app/AppKernel.php
public function registerBundles()
{

$bundles = [
// ...
new Http\HttplugBundle\HttplugBundle(),

];
}

Usage

httplug:
plugins:

logger: ~
clients:

acme:
factory: 'httplug.factory.guzzle6'
plugins: ['httplug.plugin.logger']
config:

timeout: 2

$request = $this->container->get('httplug.psr17_request_factory')->createRequest('GET',
→˓'http://example.com');
$response = $this->container->get('httplug.client.acme')->sendRequest($request);

Autowiring

The first configured client is considered the “default” client. The default clients are available for autowiring: The
PSR-18 Psr\Http\Client\ClientInterface and the Http\Client\HttpAsyncClient. Autowiring can be con-
venient to build your application.

However, if you configured several different clients and need to be sure that the correct client is used in each service, it
can also hide mistakes. Therefore you can disable autowiring with a configuration option:

httplug:
default_client_autowiring: false

When using this bundle with Symfony 5.3 or newer, you can use the Symfony #[Target] attribute to select a client by
name. For a client configured as httplug.clients.acme, this would be:

4.7. Framework Integrations 59

https://symfony.com/doc/current/service_container/autowiring.html

PHP-HTTP Documentation, Release 1.0.0

use Psr\Http\Client\ClientInterface;
use Symfony\Component\DependencyInjection\Attribute as DI;

final class MyService
{

public function __construct(
#[DI\Target('acme')] ClientInterface $client

) {}
}

Web Debug Toolbar

When using a client configured with HttplugBundle, you will get debug information in the web debug toolbar. It
will tell you how many request were made and how many of those that were successful or not. It will also show you
detailed information about each request.

The web profiler page will show you lots of information about the request and also how different plugins changes the
message. See example screen shots below.

60 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

The body of the HTTP messages is not captured by default because of performance reasons. Turn this on by changing
the captured_body_length configuration.

httplug:
profiling:

captured_body_length: 1000 # Capture the first 1000 chars of the HTTP body

You can set captured_body_length to null to avoid body limitation size.

httplug:
profiling:

captured_body_length: ~ # Avoid truncation of body content

4.7. Framework Integrations 61

PHP-HTTP Documentation, Release 1.0.0

The profiling is automatically turned off when kernel.debug = false. You can also disable the profiling by con-
figuration.

httplug:
profiling: false

You can configure the bundle to show debug information for clients found with discovery. You may also force a specific
client to be found when a third party library is using discovery. The configuration below makes sure the client with
service id httplug.client.my_guzzle7 is returned when calling Psr18ClientDiscovery::find() . It does also
make sure to show debug info for asynchronous clients.

Note: Ideally, you would always use dependency injection and never rely on auto discovery to find a client.

httplug:
clients:

my_guzzle7:
factory: 'httplug.factory.guzzle7'

discovery:
client: 'httplug.client.my_guzzle7'
async_client: 'auto'

For normal clients, the auto discovery debug info is enabled by default. For async clients, debug is not enabled by
default to avoid errors when using the bundle with a client that can not do async. To get debug information for async
clients, set discovery.async_client to 'auto' or an explicit client.

You can turn off all interaction of the bundle with auto discovery by setting the value of discovery.client to false.

Discovery of Factory Classes

You need to specify all the factory classes for you client. The following example shows how you configure factory
classes using Guzzle:

httplug:
classes:

client: Http\Adapter\Guzzle7\Client
psr17_request_factory: GuzzleHttp\Psr7\HttpFactory
psr17_response_factory: GuzzleHttp\Psr7\HttpFactory
psr17_uri_factory: GuzzleHttp\Psr7\HttpFactory
psr17_stream_factory: GuzzleHttp\Psr7\HttpFactory

Configure Clients

You can configure your clients with default options. These default values will be specific to you client you are using.
The clients are later registered as services.

httplug:
clients:

my_guzzle7:
factory: 'httplug.factory.guzzle7'
config:

These options are given to Guzzle without validation.
(continues on next page)

62 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

defaults:
timeout if connection is not established after 4 seconds
timeout: 4

acme:
factory: 'httplug.factory.curl'
config:

timeout if connection is not established after 4 seconds
CURLOPT_CONNECTTIMEOUT: 4
throttle sending data if more than ~ 1MB / second
CURLOPT_MAX_SEND_SPEED_LARGE: 1000000

$httpClient = $this->container->get('httplug.client.my_guzzle7');
$httpClient = $this->container->get('httplug.client.acme');

// will be the same as ``httplug.client.my_guzzle7``
$httpClient = $this->container->get('httplug.client');

The bundle has client factory services that you can use to build your client. If you need a very custom made client
you could create your own factory service implementing Http\HttplugBundle\ClientFactory\ClientFactory.
The built-in services are:

• httplug.factory.curl

• httplug.factory.buzz

• httplug.factory.guzzle6

• httplug.factory.guzzle7

• httplug.factory.react

• httplug.factory.socket

• httplug.factory.symfony

• httplug.factory.mock (Install php-http/mock-client first)

Note: New in version 1.10: If you already have a client service registered you can skip using the factory and use
the service key instead.

httplug:
clients:

my_client:
service: 'my_custom_client_service'

New in version 1.17: All configured clients are tagged with 'httplug.client' (the value of the constant Http\
HttplugBundle\DependencyInjection\HttplugExtension::HTTPLUG_CLIENT_TAG), so they can be easily re-
trieved. This is useful for functional tests, where one might want to replace every configured client with a mock client,
so they can be retrieved and configured later

use Http\HttplugBundle\DependencyInjection\HttplugExtension;
use Http\Mock\Client;
use Symfony\Component\DependencyInjection\ContainerBuilder;

/** @var ContainerBuilder $container */
(continues on next page)

4.7. Framework Integrations 63

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

$serviceIds = array_keys($container->findTaggedServiceIds(HttplugExtension::HTTPLUG_
→˓CLIENT_TAG));

foreach ($serviceIds as $serviceId) {
$decoratingServiceId = \sprintf(

'%s.mock',
$serviceId

);

$container->register($decoratingServiceId, Client::class)
->setDecoratedService($serviceId)
->setPublic(true);

}

Plugins

Clients can have plugins that act on the request before it is sent out and/or on the response before it is returned to the
caller. Generic plugins from php-http/client-common (e.g. retry or redirect) can be configured globally. You can
tell the client which of those plugins to use, as well as specify the service names of custom plugins that you want to
use.

Additionally you can configure any of the php-http/plugins specifically on a client. For some plugins this is the
only place where they can be configured. The order in which you specify the plugins does matter.

See the plugin documentation for more information on the plugins.

See full configuration for the full list of plugins you can configure through this bundle. If a plugin is not available in
the configuration, you can configure it as a service and reference the plugin by service id as you would do for a custom
plugin.

You can configure many of the plugins directly on the client:

// config.yml
httplug:

clients:
acme:

factory: 'httplug.factory.guzzle6'
plugins:

- error:
only_server_exception: true

- add_host:
host: "http://localhost:8000"

- header_defaults:
headers:

"X-FOO": bar
- authentication:

acme_basic:
type: 'basic'
username: 'my_username'
password: 'p4ssw0rd'

Alternatively, the same configuration also works on a global level. With this, you can configure plugins once and then
use them in several clients. The plugin service names follow the pattern httplug.plugin.<name>:

64 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

// config.yml
httplug:

plugins:
cache:

cache_pool: 'my_cache_pool'
clients:

acme:
factory: 'httplug.factory.guzzle6'
plugins:

- 'httplug.plugin.cache'
app:

plugins:
- 'httplug.plugin.cache'

Note: To configure HTTP caching, you need to require php-http/cache-plugin in your project. It is available as
a separate composer package.

Configure a Custom Plugin

To use a custom plugin or when you need specific configuration that is not covered by the bundle configuration, you
can configure the plugin as a normal Symfony service and then reference that service name in the plugin list of your
client:

// services.yml
acme_plugin:

class: Acme\Plugin\MyCustomPlugin
arguments: ["%some_parameter%"]

// config.yml
httplug:

clients:
acme:

factory: 'httplug.factory.guzzle6'
plugins:

- 'acme_plugin'

Authentication

You can configure a client with authentication. Valid authentication types are basic, bearer, service, wsse,
query_param and header. See more examples at the full configuration.

// config.yml
httplug:

plugins:
authentication:

my_wsse:
type: 'wsse'
username: 'my_username'

(continues on next page)

4.7. Framework Integrations 65

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

password: 'p4ssw0rd'

clients:
acme:

factory: 'httplug.factory.guzzle6'
plugins: ['httplug.plugin.authentication.my_wsse']

Warning: Using query parameters for authentication is not safe. The auth params will appear on the URL and we
recommend to NOT log your request, especially on production side.

VCR Plugin

The VCR Plugin allows to record and/or replay HTTP requests. You can configure the mode you want, how to find
recorded responses and how to match requests with responses. The mandatory options are:

// config.yml
httplug:

clients:
acme:

plugins:
- vcr:

mode: replay # record | replay | replay_or_record
fixtures_directory: '%kernel.project_dir%/fixtures/http' # mandatory for

→˓"filesystem" recorder
recorder: filesystem

See Full configuration for the full list of configuration options.

Warning: You have to explicitly require this plugin with composer (composer require --dev php-http/
vcr-plugin) before using it, as it isn’t included by default.

Special HTTP Clients

If you want to use the FlexibleHttpClient or HttpMethodsClient from the php-http/client-common package,
you may specify that on the client configuration.

// config.yml
httplug:

clients:
acme:

factory: 'httplug.factory.guzzle6'
flexible_client: true

foobar:
factory: 'httplug.factory.guzzle6'
http_methods_client: true

66 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

List of Services

Service id Description
httplug.psr17_request_factory Service* that provides the PsrHttpMessageRequestFac-

toryInterface
httplug.psr17_response_factory Service* that provides the PsrHttpMessageResponse-

FactoryInterface
httplug.psr17_uri_factory Service* that provides the PsrHttpMessageUriFactory-

Interface
httplug.psr17_stream_factory Service* that provides the PsrHttpMessageStreamFac-

toryInterface
httplug.client.[name] There is one service per named client.
httplug.client

If there is a client named “default”, this service is an
alias to
that client, otherwise it is an alias to the first client
configured.

httplug.plugin.content_length

httplug.plugin.decoder

httplug.plugin.logger

httplug.plugin.redirect

httplug.plugin.retry

httplug.plugin.stopwatch

These are plugins that are enabled by default.
These services are private and should only be used to
configure
clients or other services.

httplug.plugin.cache

httplug.plugin.cookie

httplug.plugin.history

httplug.plugin.error

These are plugins that are disabled by default and only
get
activated when configured.
These services are private and should only be used to
configure
clients or other services.

* These services are always an alias to another service. You can specify your own service or leave the default, which
is the same name with `.default` appended.

Usage for Reusable Bundles

Rather than code against specific HTTP clients, you want to use the HTTPlug Client interface. To avoid building your
own infrastructure to define services for the client, simply require: php-http/httplug-bundle in your bundles
composer.json. You SHOULD provide a configuration option to specify which HTTP client service to use for each
of your services. This option should default to httplug.client. This way, the default case needs no additional
configuration for your users, but they have the option of using specific clients with each of your services.

The only steps they need is require one of the adapter implementations in their projects composer.json and instan-
tiating the HttplugBundle in their kernel.

4.7. Framework Integrations 67

PHP-HTTP Documentation, Release 1.0.0

Mock Responses In Functional Tests

First thing to do is add the php-http/mock-client to your require-dev section. Then, use the mock client factory in
your test environment configuration:

config_test.yml
httplug:

clients:
my_awesome_backend:

factory: 'httplug.factory.mock' # replace factory

The client is always wrapped into a plugin client. Therefore you need to access the inner client to get the mock client.
It is available in the container with the suffix .inner. For the example above, the full name is httplug.clients.
my_awesome_backend.inner.

If you enable a decorator like http_methods_client: true, the actual mock client will be at httplug.client.
my_awesome_backend.http_methods.inner. Use the container:debug command to make sure you grab the
correct service.

To mock a response in your tests, do:

// SomeWebTestCase.php
$client = static::createClient();

// If your test has the client (BrowserKit) make multiple requests, you need to disable␣
→˓reboot as the kernel is rebooted on each request.
// $client->disableReboot();

$response = $this->createMock('Psr\Http\Message\ResponseInterface');
$response->method('getBody')->willReturn(/* Psr\Http\Message\Interface instance␣
→˓containing expected response content. */);
$client->getContainer()->get('httplug.clients.my_awesome_backend.client')->addResponse(
→˓$response);

If you do not specify the factory in your configuration, you can also directly overwrite the HTTPlug services:

config/services_test.yaml
services:

overwrite the http clients for mocking
httplug.client.my_awesome_backend:

class: Http\Mock\Client
public: true

With this method, the plugin client is not applied. However, if you configure a decorator, your mock client will still be
decorated and the mock available as service ...<decorator>.inner.

Read more on how the mock client works in the mock client documentation.

68 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

4.7.2 Full configuration

This page shows an example of all configuration values provided by the bundle.

Hint: See the plugin documentation for more information on the plugins.

If a plugin is not listed in the configuration reference below, you can configure it as a service and reference the plugin
by service id as you would do for a custom plugin.

// config.yml
httplug:

allows to disable autowiring of the clients
default_client_autowiring: true
define which service to use as httplug.<type>
this does NOT change autowiring, which will always go to the "default" client
main_alias:

client: httplug.client.default
psr17_request_factory: httplug.psr17_request_factory.default
psr17_response_factory: httplug.psr17_response_factory.default
psr17_uri_factory: httplug.psr17_uri_factory.default
psr17_stream_factory: httplug.psr17_stream_factory.default

classes:
uses discovery if not specified
client: ~
psr17_request_factory: ~
psr17_response_factory: ~
psr17_uri_factory: ~
psr17_stream_factory: ~

plugins: # Global plugin configuration. When configured here, plugins need to be␣
→˓explicitly added to clients by service name.

authentication:
The names can be freely chosen, the authentication type is specified in␣

→˓the "type" option
my_basic:

type: 'basic'
username: 'my_username'
password: 'p4ssw0rd'

my_wsse:
type: 'wsse'
username: 'my_username'
password: 'p4ssw0rd'

my_bearer:
type: 'bearer'
token: 'authentication_token_hash'

my_query_param:
type: 'query_param'
params:

access_token: '9zh987g86fg87gh978hg9g79'
my_header:

type: 'header'
header_name: 'ApiKey'

(continues on next page)

4.7. Framework Integrations 69

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

header_value: '9zh987g86fg87gh978hg9g79'
my_service:

type: 'service'
service: 'my_authentication_service'

cache: # requires the php-http/cache-plugin package to be installed in your␣
→˓package

cache_pool: 'my_cache_pool'
stream_factory: 'httplug.stream_factory'
config:

default_ttl: 3600
respect_cache_headers: true
cache_key_generator: null # This must be a service id to a service␣

→˓implementing 'Http\Client\Common\Plugin\Cache\Generator\CacheKeyGenerator'. If 'null'
→˓'Http\Client\Common\Plugin\Cache\Generator\SimpleGenerator' will be used.

cookie:
cookie_jar: my_cookie_jar

decoder:
use_content_encoding: true

history:
journal: my_journal

logger:
logger: 'logger'
formatter: null

redirect:
preserve_header: true
use_default_for_multiple: true

retry:
retry: 1

stopwatch:
stopwatch: 'debug.stopwatch'

error:
enabled: false
only_server_exception: false

profiling:
enabled: true # Defaults to kernel.debug
formatter: null # Defaults to \Http\Message\Formatter\FullHttpMessageFormatter
captured_body_length: 0

discovery:
client: 'auto'
async_client: false

clients:
acme:

factory: 'httplug.factory.guzzle6'
service: 'my_service' # Can not be used with "factory" or "config"
flexible_client: false # Can only be true if http_methods_client is␣

→˓false
http_methods_client: false # Can only be true if flexible_client is false
public: null # Set to true if you really cannot use␣

→˓dependency injection and need to make the client service public

(continues on next page)

70 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

config:
Options to the Guzzle 6 constructor
timeout: 2

plugins:
Can reference a globally configured plugin service
- 'httplug.plugin.authentication.my_wsse'
Can configure a plugin customized for this client
- cache:

cache_pool: 'my_other_pool'
config:

default_ttl: 120
Can configure plugins that can not be configured globally
- add_host:

Host name including protocol and optionally the port number, e.g.␣
→˓https://api.local:8000

host: http://localhost:80 # Required
Whether to replace the host if request already specifies it
replace: false

- add_path:
Path to be added, e.g. /api/v1
path: /api/v1 # Required

- base_uri:
Base Uri including protocol, optionally the port number and␣

→˓prepend path, e.g. https://api.local:8000/api
uri: http://localhost:80 # Required
Whether to replace the host if request already specifies one
replace: false

Set content-type header based on request body, if the header is not␣
→˓already set

- content_type:
skip content-type detection if body is larger than size_limit
skip_detection: true
size_limit in bytes for when skip_detection is enabled
size_limit: 200000

Append headers to the request. If the header already exists the value␣
→˓will be appended to the current value.

- header_append:
Keys are the header names, values the header values
headers:

'X-FOO': bar # contrary to default symfony behavior, hyphens "-"␣
→˓are NOT translated to underscores "_" for the headers.

Set header to default value if it does not exist.
- header_defaults:

Keys are the header names, values the header values
headers:

'X-FOO': bar
Set headers to requests. If the header does not exist it wil be set,␣

→˓if the header already exists it will be replaced.
- header_set:

Keys are the header names, values the header values
headers:

'X-FOO': bar

(continues on next page)

4.7. Framework Integrations 71

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

Remove headers from requests.
- header_remove:

List of header names to remove
headers: ["X-FOO"]

Sets query parameters to default value if they are not present in the␣
→˓request.

- query_defaults:
parameters:

locale: en
Plugins to ensure the request resp response body is seekable
- request_seekable_body:

use_file_buffer: true
memory_buffer_size: 2097152

- response_seekable_body:
use_file_buffer: true
memory_buffer_size: 2097152

Enable VCR plugin integration (Must be installed first).
- vcr:

mode: replay # record | replay | replay_or_record
fixtures_directory: '%kernel.project_dir%/fixtures/http' # mandatory␣

→˓for "filesystem" recorder
recorder: filesystem ## Can be filesystem, in_memory or the id of␣

→˓your custom recorder
naming_strategy: service_id.of.naming_strategy # or "default"
naming_strategy_options: # options for the default naming strategy,

→˓ see VCR plugin documentation
hash_headers: []
hash_body_methods: []

• Nette Framework Integration (external Documentation)

4.8 Backwards compatibility

Backwards compatibility is an important topic for us, as it should be in every open source project. We follow Semver
which allows us to only break backwards compatibility between major versions. We use deprecation notices to inform
you about the changes made before they are removed.

Our backwards compatibility promise does not include classes or functions with the @internal annotation.

4.8.1 Symfony Bundle

The HttplugBundle is just a Symfony integration for HTTPlug and it does not have any classes which falls under the
BC promise. The backwards compatibility of the bundle is only the configuration and its values (and of course the
behavior of those values).

72 Chapter 4. Community

https://github.com/FreezyBee/Httplug
http://semver.org/

PHP-HTTP Documentation, Release 1.0.0

4.8.2 Discovery

The order of the strategies is not part of our BC promise. The strategies themselves are marked as @internal so they
are also not part of our BC promise. However, we do promise that we will not remove a strategy neither will we remove
classes from the CommonClassesStrategy.

The consequences of the BC promise for the discovery library is that you can not rely on the same client to be returned
in the future. However, if discovery does find a client now, you can be sure that after future updates it will still discover
a client.

4.9 Message

This package contains various PSR-7 tools which might be useful in an HTTP workflow:

4.9.1 Authentication

The Authentication component allows you to to implement authentication methods which can simply update the request
with authentication detail (for example by adding an Authorization header). This is useful when you have to send
multiple requests to the same endpoint. Using an authentication implementation, these details can be separated from
the actual requests.

Installation

$ composer require php-http/message

Authentication Methods

Method Parameters Behavior
Basic
Auth

Username and password Authorization header of the HTTP specification

Bearer Token Authorization header of the HTTP specification
WSSE Username and password Authorization header of the HTTP specification
Query
Params

Array of param-value pairs URI parameters

Chain Array of authentication instances Behaviors of the underlying authentication methods
Matching An authentication instance and a

matcher callback
Behavior of the underlying authentication method if the
matcher callback passes

Header Header name and value Add an arbitrary authentication header

4.9. Message 73

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication
http://www.xml.com/pub/a/2003/12/17/dive.html

PHP-HTTP Documentation, Release 1.0.0

Integration with HTTPlug

Normally requests must be authenticated “by hand” which is not really convenient.

If you use HTTPlug, you can integrate this component into the client using the authentication plugin.

Examples

General usage looks like the following:

$authentication = new AuthenticationMethod();

/** @var Psr\Http\Message\RequestInterface */
$authentication->authenticate($request);

Basic Auth

use Http\Message\Authentication\BasicAuth;

$authentication = new BasicAuth('username', 'password');

Bearer

use Http\Message\Authentication\Bearer;

$authentication = new Bearer('token');

WSSE

use Http\Message\Authentication\Wsse;

$authentication = new Wsse('username', 'password');

For better security, also pass the 3rd optional parameter to use a better hashing algorithm than sha1, e.g.

use Http\Message\Authentication\Wsse;

$authentication = new Wsse('username', 'password', 'sha512');

74 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

Query Params

http://api.example.com/endpoint?access_token=9zh987g86fg87gh978hg9g79:

use Http\Message\Authentication\QueryParam;

$authentication = new QueryParam([
'access_token' => '9zh987g86fg87gh978hg9g79',

]);

Warning: Using query parameters for authentication is not safe. Only use it when this is the only authentication
method offered by a third party application.

Chain

The idea behind this authentication method is that in some cases you might need to authenticate the request with
multiple methods.

For example it’s a common practice to protect development APIs with Basic Auth and the regular token authentication
as well to protect the API from unnecessary processing:

use Http\Message\Authentication\Chain;

$authenticationChain = [
new AuthenticationMethod1(),
new AuthenticationMethod2(),

];

$authentication = new Chain($authenticationChain);

Matching

With this authentication method you can conditionally add authentication details to your request by passing a callable
to it. When a request is passed, the callable is called and used as a boolean value in order to decide whether the request
should be authenticated or not. It also accepts an authentication method instance which does the actual authentication
when the condition is fulfilled.

For example a common use case is to authenticate requests sent to certain paths:

use Http\Message\Authentication\Matching;
use Psr\Http\Message\RequestInterface;

$authentication = new Matching(
new AuthenticationMethod1(),
function (RequestInterface $request) {

$path = $request->getUri()->getPath();

return 0 === strpos($path, '/api');
}

);

4.9. Message 75

PHP-HTTP Documentation, Release 1.0.0

In order to ease creating matchers for URLs/paths, there is a static factory method for this purpose: createUrlMatcher
The first argument is an authentication method, the second is a regular expression to match against the URL:

use Http\Message\Authentication\Matching;

$authentication = Matching::createUrlMatcher(new AuthenticationMethod(), '\/api');

Header

With this authentication method you can add arbitrary headers.

In the following example, we are setting a X-AUTH-TOKEN header with it’s value:

use Http\Message\Authentication\Header;

$authentication = new Header('X-AUTH-TOKEN', '9zh987g86fg87gh978hg9g79');

Implement Your Own

Implementing an authentication method is easy: only one method needs to be implemented:

use Http\Message\Authentication;
use Psr\Http\Message\RequestInterface;

class MyAuth implements Authentication
{

public function authenticate(RequestInterface $request)
{

// do something with the request

// keep in mind that the request is immutable - return the updated
// version of the request with the authentication information added
// to it.
return $request;

}
}

4.9.2 HTTP Factories (deprecated)

Factory interfaces for PSR-7 HTTP objects.

This package has been superseded by PSR-17. Our HTTP-PHP factories have been retired and the repository archived.
The PHP-HTTP libraries switched to use the PSR-17 factories. Please migrate your code to the PSR-17 factories too.

76 Chapter 4. Community

https://www.php-fig.org/psr/psr-17/

PHP-HTTP Documentation, Release 1.0.0

Rationale

At the time of building this, PSR-17 did not yet exist. Read the documentation of PSR-17 to learn why a standard for
factories is useful.

Factories

The php-http/message-factory package defines interfaces for PSR-7 factories including:

• RequestFactory

• ResponseFactory

• MessageFactory (combination of request and response factories)

• StreamFactory

• UriFactory

Implementations of the interfaces above for Laminas Diactoros (and its abandoned predecessor Zend Diactoros), Guzzle
PSR-7 and the Slim PSR-7 can be found in php-http/message.

Usage

Instantiate the factories in your bootstrap code or use discovery for them. Inject the factories into the rest of your code
to limit the implementation choice to the bootstrapping code:

// ApiClient.php

use Http\Message\RequestFactory;
use Http\Message\StreamFactory;
use Http\Message\UriFactory;

class ApiClient
{

/**
* @var RequestFactory
*/
private $requestFactory;

/**
* @var StreamFactory
*/
private $streamFactory;

/**
* @var UriFactory
*/
private $uriFactory;

public function __construct(
RequestFactory $requestFactory,
StreamFactory $streamFactory,
UriFactory $uriFactory

) {
(continues on next page)

4.9. Message 77

https://www.php-fig.org/psr/psr-17/
https://github.com/laminas/laminas-diactoros
https://github.com/zendframework/zend-diactoros
https://github.com/guzzle/psr7
https://github.com/guzzle/psr7
https://github.com/slimphp/Slim-Psr7

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

$this->requestFactory = $requestFactory;
$this->streamFactory = $streamFactory;
$this->uriFactory = $uriFactory;

}

public function doStuff()
{

$request = $this->requestFactory->createRequest('GET', 'http://httplug.io');
$stream = $this->streamFactory->createStream('stream content');
$uri = $this->uriFactory->createUri('http://httplug.io');
...

}
}

The bootstrapping code could look like this:

// bootstrap.php
use Http\Message\MessageFactory\DiactorosMessageFactory;
use Http\Message\StreamFactory\DiactorosStreamFactory;
use Http\Message\UriFactory\DiactorosUriFactory;

$apiClient = new ApiClient(
new DiactorosMessageFactory(),
new DiactorosStreamFactory(),
new DiactorosUriFactory()

);

You could also use Discovery to make the factory arguments optional and automatically find an available factory in the
client:

// ApiClient.php

use Http\Discovery\MessageFactoryDiscovery;
use Http\Discovery\StreamFactoryDiscovery;
use Http\Discovery\UriFactoryDiscovery;
use Http\Message\RequestFactory;
use Http\Message\StreamFactory;
use Http\Message\UriFactory;

class ApiClient
{

public function __construct(
RequestFactory $requestFactory = null,
StreamFactory $streamFactory = null,
UriFactory $uriFactory = null

) {
$this->requestFactory = $requestFactory ?: MessageFactoryDiscovery::find(),
$this->streamFactory = $streamFactory ?: StreamFactoryDiscovery::find();
$this->uriFactory = $uriFactory ?: UriFactoryDiscovery::find();;

}

...
}

78 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

Hint: If you create requests only and no responses, use RequestFactory in the type hint, instead of the
MessageFactory. And vice versa if you create responses only.

• Authentication method implementations

• Various Stream encoding tools

• Message decorators

• Cookie implementation

4.10 Client Common

The client-common package provides some useful tools for working with HTTPlug. Include them in your project with
composer:

composer require php-http/client-common "^1.0"

4.10.1 HttpMethodsClient

This client wraps the HttpClient and provides convenience methods for common HTTP requests like GET and POST.
To be able to do that, it also wraps a message factory:

use Http\Discovery\HttpClientDiscovery;
use Http\Discovery\MessageFactoryDiscovery;

$client = new HttpMethodsClient(
HttpClientDiscovery::find(),
MessageFactoryDiscovery::find()

);

$foo = $client->get('http://example.com/foo');
$bar = $client->get('http://example.com/bar', ['accept-encoding' => 'application/json']);
$post = $client->post('http://example.com/update', [], 'My post body');

..versionadded:: 2.0 HttpMethodsClient is final since version 2.0. You can typehint the
HttpMethodsClientInterface to allow mocking the client in unit tests.

4.10.2 BatchClient

This client wraps a HttpClient and extends it with the possibility to send an array of requests and to retrieve their
responses as a BatchResult:

use Http\Discovery\HttpClientDiscovery;
use Http\Discovery\MessageFactoryDiscovery;

$messageFactory = MessageFactoryDiscovery::find();

$requests = [
$messageFactory->createRequest('GET', 'http://example.com/foo'),

(continues on next page)

4.10. Client Common 79

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

$messageFactory->createRequest('POST', 'http://example.com/update', [], 'My post body
→˓'),
];

$client = new BatchClient(
HttpClientDiscovery::find()

);

$batchResult = $client->sendRequests($requests);

..versionadded:: 2.0 BatchClient is final since version 2.0. You can typehint the BatchClientInterface to allow
mocking the client in unit tests.

The BatchResult itself is an object that contains responses for all requests sent. It provides methods that give appro-
priate information based on a given request:

$requests = [
$messageFactory->createRequest('GET', 'http://example.com/foo'),
$messageFactory->createRequest('POST', 'http://example.com/update', [], 'My post body

→˓'),
];

$batchResult = $client->sendRequests($requests);

if ($batchResult->hasResponses()) {
$fooSuccessful = $batchResult->isSuccessful($requests[0]);
$updateResponse = $batchResult->getResponseFor($request[1]);

}

If one or more of the requests throw exceptions, they are added to the BatchResult and the BatchClient will ulti-
mately throw a BatchException containing the BatchResult and therefore its exceptions:

$requests = [
$messageFactory->createRequest('GET', 'http://example.com/update'),

];

try {
$batchResult = $client->sendRequests($requests);

} catch (BatchException $e) {
var_dump($e->getResult()->getExceptions());

}

80 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

4.10.3 PluginClient

See the documentation about plugins

4.10.4 HttpClientPool

The HttpClientPool allows to balance requests between a pool of HttpClient and/or HttpAsyncClient.

The use cases are:

• Using a cluster (like an Elasticsearch service with multiple master nodes)

• Using fallback servers with the combination of the RetryPlugin (see Retry Plugin)

You can attach HTTP clients to this kind of client by using the addHttpClient method:

use Http\Client\Common\HttpClientPool\LeastUsedClientPool;
use Http\Discovery\HttpAsyncClientDiscovery;
use Http\Discovery\HttpClientDiscovery;
use Http\Discovery\MessageFactoryDiscovery;

$messageFactory = MessageFactoryDiscovery::find();

$httpClient = HttpClientDiscovery::find();
$httpAsyncClient = HttpAsyncClientDiscovery::find();

$httpClientPool = new LeastUsedClientPool();
$httpClientPool->addHttpClient($httpClient);
$httpClientPool->addHttpClient($httpAsyncClient);

$httpClientPool->sendRequest($messageFactory->createRequest('GET', 'http://example.com/
→˓update'));

Clients added to the pool are decorated with the HttpClientPoolItem class unless they already are an instance of
this class. The pool item class lets the pool be aware of the number of requests currently being processed by that client.
It is also used to deactivate clients when they receive errors. Deactivated clients can be reactivated after a certain
amount of time, however, by default, they stay deactivated forever. To enable the behavior, wrap the clients with the
HttpClientPoolItem class yourself and specify the re-enable timeout:

// Reactivate after 30 seconds
$httpClientPool->addHttpClient(new HttpClientPoolItem($httpClient, 30));
// Reactivate after each call
$httpClientPool->addHttpClient(new HttpClientPoolItem($httpClient, 0));
// Never reactivate the client (default)
$httpClientPool->addHttpClient(new HttpClientPoolItem($httpClient, null));

HttpClientPool is an interface. There are three concrete implementations with specific strategies on how to choose
clients:

4.10. Client Common 81

PHP-HTTP Documentation, Release 1.0.0

LeastUsedClientPool

LeastUsedClientPool choose the client with the fewest requests in progress. As it sounds the best strategy for
sending a request on a pool of clients, this strategy has some limitations: :

• The counter is not shared between PHP process, so this strategy is not so useful in a web context, however it will
make better sense in a PHP command line context.

• This pool only makes sense with asynchronous clients. If you use sendRequest, the call is blocking, and the
pool will only ever use the first client as its request count will be 0 once sendRequest finished.

A deactivated client will be removed for the pool until it is reactivated, if none are available it will throw a
NotFoundHttpClientException

RoundRobinClientPool

RoundRobinClientPool keeps an internal pointer on the pool. At each call the pointer is moved to the next
client, if the current client is disabled it will move to the next client, and if none are available it will throw a
NotFoundHttpClientException

The pointer is not shared across PHP processes, so for each new one it will always start on the first client.

RandomClientPool

RandomClientPool randomly choose an available client, throw a NotFoundHttpClientException if none are avail-
able.

4.10.5 HTTP Client Router

This client accepts pairs of clients and request matchers. Every request is “routed” through the HttpClientRouter,
checked against the request matchers and sent using the first matched client. If there is no matching client, an exception
is thrown.

This allows a single client to be used for different requests.

In the following example we use the client router to access an API protected by basic auth and also to download an
image from a static host:

use Http\Client\Common\HttpClientRouter;
use Http\Client\Common\PluginClient;
use Http\Client\Common\Plugin\AuthenticationPlugin;
use Http\Client\Common\Plugin\CachePlugin;
use Http\Discovery\HttpClientDiscovery;
use Http\Discovery\MessageFactoryDiscovery;
use Http\Message\Authentication\BasicAuth;
use Http\Message\RequestMatcher\RequestMatcher;

$client = new HttpClientRouter();

$requestMatcher = new RequestMatcher(null, 'api.example.com');
$pluginClient = new PluginClient(

HttpClientDiscovery::find(),
[new AuthenticationPlugin(new BasicAuth('user', 'password'))]

);
(continues on next page)

82 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

$client->addClient($pluginClient, $requestMatcher);

$requestMatcher = new RequestMatcher(null, 'images.example.com');

/** @var \Psr\Cache\CacheItemPoolInterface $pool */
$pool = ...
/** @var \Http\Message\StreamFactory $streamFactory */
$streamFactory = ...

$pluginClient = new PluginClient(
HttpClientDiscovery::find(),
[new CachePlugin($pool, $streamFactory)]

);

$client->addClient($pluginClient, $requestMatcher);

$messageFactory = MessageFactoryDiscovery::find();

// Get the user data
$request = $messageFactory->createRequest('GET', 'https://api.example.com/user/1');

$response = $client->send($request);
$imagePath = json_decode((string) $response->getBody(), true)['image_path'];

// Download the image and store it in cache
$request = $messageFactory->createRequest('GET', 'https://images.example.com/user/'.
→˓$imagePath);

$response = $client->send($request);

file_put_contents('path/to/images/'.$imagePath, (string) $response->getBody());

$request = $messageFactory->createRequest('GET', 'https://api2.example.com/user/1');

// Throws an Http\Client\Exception\RequestException
$client->send($request);

Note: When you have small difference between the underlying clients (for example different credentials based on
host) it’s easier to use the RequestConditionalPlugin and the PluginClient, but in that case the routing logic is
integrated into the linear request flow which might make debugging harder.

..versionadded:: 2.0 HttpClientRouter is final since version 2.0. You can typehint the
HttpClientRouterInterface to allow mocking the client in unit tests.

4.10. Client Common 83

PHP-HTTP Documentation, Release 1.0.0

4.11 Adapter Integration Tests

TODO

4.12 Promise

A promise represents a single result of an asynchronous operation. It is not necessarily available at a specific time, but
should become in the future.

The PHP-HTTP promise follows the Promises/A+ standard.

Note: Work is underway for a Promise PSR. When that PSR has been released, we will use it in HTTPlug and deprecate
our Http\Promise\Promise interface.

4.12.1 Asynchronous requests

Asynchronous requests enable non-blocking HTTP operations. When sending asynchronous HTTP requests, a promise
is returned. The promise acts as a proxy for the response or error result, which is not yet known.

To execute such a request with HTTPlug:

$request = $messageFactory->createRequest('GET', 'http://php-http.org');

// Where $client implements HttpAsyncClient
$promise = $client->sendAsyncRequest($request);

// This code will be executed right after the request is sent, but before
// the response is returned.
echo 'Wow, non-blocking!';

See HTTP Factories (deprecated) on how to use message factories.

Although the promise itself is not restricted to resolve a specific result type, in HTTP context it resolves a PSR-7
Psr\Http\Message\ResponseInterface or fails with an Http\Client\Exception.

Note: An asynchronous request will never throw an exception directly but always return a promise. All exceptions
SHOULD implement Http\Client\Exception. See Exceptions for more information on the exceptions you might
encounter.

4.12.2 Wait

The $promise that is returned implements Http\Promise\Promise. At this point in time, the response is not known
yet. You can be polite and wait for that response to arrive:

try {
$response = $promise->wait();

} catch (\Exception $exception) {
(continues on next page)

84 Chapter 4. Community

https://promisesaplus.com
https://groups.google.com/forum/?fromgroups#!topic/php-fig/wzQWpLvNSjs

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

echo $exception->getMessage();
}

4.12.3 Then

Instead of waiting, however, you can handle things asynchronously. Call the then method with two arguments: one
callback that will be executed if the request turns out to be successful and/or a second callback that will be executed if
the request results in an error:

$promise->then(
// The success callback
function (ResponseInterface $response) {

echo 'Yay, we have a shiny new response!';

// Write status code to some log file
file_put_contents('responses.log', $response->getStatusCode() . "\n", FILE_

→˓APPEND);

return $response;
},

// The failure callback
function (\Exception $exception) {

echo 'Oh darn, we have a problem';

throw $exception;
}

);

The failure callback can also return a Promise. This can be useful to implement a retry mechanism, as follows:

use Http\Discovery\HttpAsyncClientDiscovery;
use Http\Discovery\Psr17FactoryDiscovery;

$client = HttpAsyncClientDiscovery::find();
$requestFactory = Psr17FactoryDiscovery::findRequestFactory();
$retries = 2; // number of HTTP retries
$request = $requestFactory->createRequest("GET", "http://localhost:8080/test");

// success callback
$success = function (ResponseInterface $response) {

return $response;
};
// failure callback
$failure = function (Exception $e) use ($client, $request) {

// $request can be changed, e.g. using a Round-Robin algorithm

// try another execution
return $client->sendAsyncRequest($request);

};

(continues on next page)

4.12. Promise 85

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

$promise = $client->sendAsyncRequest($request);
for ($i=0; $i < $retries; $i++) {

$promise = $promise->then($success, $failure);
}
// Add the last callable to manage the exceeded maximum number of retries
$promise->then($success, function(\Exception $e) {

throw new \Exception(sprintf(
"Exceeded maximum number of retries (%d): %s",
$retries,
$e->getMessage()

));
});

4.13 Discovery

The discovery service allows to find installed resources and auto-install missing ones.

Currently available discovery services:

• PSR-17 Factory Discovery

• PSR-18 HTTP Client Discovery

• PSR-7 Message Factory Discovery (deprecated in favor of PSR-17)

• PSR-7 URI Factory Discovery (deprecated in favor of PSR-17)

• PSR-7 Stream Factory Discovery (deprecated in favor of PSR-17)

• HTTP Async Client Discovery

• HTTP Client Discovery (deprecated in favor of PSR-18)

• Mock Client Discovery (not enabled by default)

The principle is always the same: you call the static find method on the discovery service. The discovery ser-
vice will try to locate a suitable implementation. If no implementation is found, an Http\Discovery\Exception\
NotFoundException is thrown.

Discovery is simply a convenience wrapper to statically access clients and factories for when Dependency Injection is
not an option. Discovery is particularly useful in libraries that want to offer zero-configuration services relying on the
virtual packages.

4.13.1 Using discovery in a shared library

The goal of the PSR standards is that libraries do not depend on specific implementations but only on the standard.
The library should only require the PSR standards.

To run tests, you might still need an implementation. We recommend to explicitly require that, but only for development.
To build a library that needs to send HTTP requests, you could do:

$ composer require --dev symfony/http-client
$ composer require --dev nyholm/psr7

Then, you can disable the Composer plugin provided by php-http/discovery because you just installed the dev
dependencies you need for testing:

86 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

$ composer config allow-plugins.php-http/discovery false

Finally, you need to require php-http/discovery and the generic implementations that your library is going to need:

$ composer require php-http/discovery:^1.17
$ composer require psr/http-client-implementation:*
$ composer require psr/http-factory-implementation:*

Now, you’re ready to make an HTTP request:

use Http\Discovery\Psr18Client;

$client = new Psr18Client();

$request = $client->createRequest('GET', 'https://example.com');
$response = $client->sendRequest($request);

New in version 1.17: The Psr18Client is available since v1.17.

Internally, this code will use whatever PSR-7, PSR-17 and PSR-18 implementations your users have installed.

It is best practice to allow the users of your library to optionally specify the ClientInterface instance and only
fallback to discovery when no explicit client has been specified.

4.13.2 Auto-installation

New in version 1.15: Auto-installation of missing dependencies is available since v1.15.

Discovery embeds a composer plugin that can auto-install missing implementations when an application does not
specify any specific implementation.

If a library requires both php-http/discovery and one of the supported virtual packages (see HTTPlug for Library
Developers), but no implementation for the virtual package is already installed, the plugin will auto-install the best
matching known implementation.

For example, if the project requires react/event-loop, the plugin will select php-http/react-adapter to meet
a missing dependency on php-http/client-implementation.

The following abstractions are currently supported:

• php-http/async-client-implementation

• php-http/client-implementation

• psr/http-client-implementation

• psr/http-factory-implementation

• psr/http-message-implementation

Note: Auto-installation is only done for libraries that directly require php-http/discovery to avoid unexpected
dependency installation.

If you do not want auto-installation to happen, you can chose to not enable the composer plugin of the discovery
component:

composer config allow-plugins.php-http/discovery false

4.13. Discovery 87

PHP-HTTP Documentation, Release 1.0.0

4.13.3 Strategies

The package uses strategies to select an implementation.

The default strategy contains a list of preferences that looks for well-known implementations: Symfony, Guzzle, Diac-
toros and Slim Framework.

Once a strategy provided a candidate, the result is cached in memory and reused for further discovery calls in the same
process.

To register a custom strategy, implement the Http\Discovery\Strategy\DiscoveryStrategy interface and reg-
ister your strategy with the prependStrategy, appendStrategy or setStrategies method of the corresponding
discovery type.

4.13.4 Implementation Pinning

New in version 1.17: Pinning the preferred implementation is available since v1.17.

In case there are several implementations available, the application can pin which implementation to prefer. You can
specify the implementation for one of the standards:

$ composer config extra.discovery.psr/http-factory-implementation GuzzleHttp\Psr7\
→˓HttpFactory

This will update your composer.json file to add the following configuration:

"extra": {
"discovery": {

"psr/http-factory-implementation": "GuzzleHttp\\Psr7\\HttpFactory"
}

}

You can also pin single interfaces, e.g. for the PSR-17 factories:

"extra": {
"discovery": {

"Psr\\Http\\Message\\RequestFactoryInterface": "Slim\\Psr7\\Factory\\
→˓RequestFactory"

}
}

Don’t forget to run composer install to apply the changes, and ensure that the composer plugin is enabled:

$ composer config allow-plugins.php-http/discovery true
$ composer install

Note: Implementation pinning only works if the composer plugin of discovery is allowed. If you disabled the plugin,
you need to configure your own discovery if you need a specific implementation selection.

88 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

4.13.5 Installation

$ composer require php-http/discovery

4.13.6 Common Errors

Could not find resource using any discovery strategy

If you get an error saying “Could not find resource using any discovery strategy.” it means that all the discovery
strategies have failed. Most likely, your project is missing the message factories and/or a PRS-7 implementation.
See the user documentation.

To resolve this you may run

$ composer require php-http/curl-client guzzlehttp/psr7 php-http/message

No factories found

The error “No message factories found. To use Guzzle, Diactoros or Slim Framework factories install php-http/message
and the chosen message implementation.” tells you that no discovery strategy could find an installed implementation
of PSR-7 and/or factories for that implementation. You need to install those libraries. If you want to use Guzzle you
may run:

$ composer require php-http/message guzzlehttp/psr7

No HTTPlug clients found

The error “No HTTPlug clients found. Make sure to install a package providing ‘php-http/client-implementation’” says
that we cannot find a client. See our list of clients and install one of them.

$ composer require php-http/curl-client

4.13.7 HTTP Client Discovery

This type of discovery finds an HTTP Client implementation:

use Http\Client\HttpClient;
use Http\Discovery\HttpClientDiscovery;

class MyClass
{

/**
* @var HttpClient
*/
private $httpClient;

/**
* @param HttpClient|null $httpClient Client to do HTTP requests, if not set, auto␣

→˓discovery will be used to find a HTTP client.
(continues on next page)

4.13. Discovery 89

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

*/
public function __construct(HttpClient $httpClient = null)
{

$this->httpClient = $httpClient ?: HttpClientDiscovery::find();
}

}

4.13.8 HTTP Asynchronous Client Discovery

This type of discovery finds a HTTP asynchronous Client implementation:

use Http\Client\HttpAsyncClient;
use Http\Discovery\HttpAsyncClientDiscovery;

class MyClass
{

/**
* @var HttpAsyncClient
*/
private $httpAsyncClient;

/**
* @param HttpAsyncClient|null $httpAsyncClient Client to do HTTP requests, if not␣

→˓set, auto discovery will be used to find an asynchronous client.
*/
public function __construct(HttpAsyncClient $httpAsyncClient = null)
{

$this->httpAsyncClient = $httpAsyncClient ?: HttpAsyncClientDiscovery::find();
}

}

4.13.9 PSR-17 Factory Discovery

This type of discovery finds a factory for a PSR-17 implementation:

use Psr\Http\Message\RequestFactoryInterface;
use Psr\Http\Message\ResponseFactoryInterface;
use Http\Discovery\Psr17FactoryDiscovery;

class MyClass
{

/**
* @var RequestFactoryInterface
*/
private $requestFactory;

/**
* @var ResponseFactoryInterface
*/
private $responseFactory;

(continues on next page)

90 Chapter 4. Community

http://www.php-fig.org/psr/psr-17

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

/**
* @var ServerRequestFactoryInterface
*/
private $serverRequestFactory;

/**
* @var StreamFactoryInterface
*/
private $streamFactory;

/**
* @var UploadedFileFactoryInterface
*/
private $uploadedFileFactory;

/**
* @var UriFactoryInterface
*/
private $uriFactory;

public function __construct(
RequestFactoryInterface $requestFactory = null,
ResponseFactoryInterface $responseFactory = null,
ServerRequestFactoryInterface $serverRequestFactory = null,
StreamFactoryInterface $streamFactory = null,
UploadedFileFactoryInterface $uploadedFileFactory = null,
UriFactoryInterface = $uriFactoryInterface = null

) {
$this->requestFactory = $requestFactory ?:␣

→˓Psr17FactoryDiscovery::findRequestFactory();
$this->responseFactory = $responseFactory ?:␣

→˓Psr17FactoryDiscovery::findResponseFactory();
$this->serverRequestFactory = $serverRequestFactory ?:␣

→˓Psr17FactoryDiscovery::findServerRequestFactory();
$this->streamFactory = $streamFactory ?:␣

→˓Psr17FactoryDiscovery::findStreamFactory();
$this->uploadedFileFactory = $uploadedFileFactory ?:␣

→˓Psr17FactoryDiscovery::findUploadedFileFactory();
$this->uriFactory = $uriFactory ?: Psr17FactoryDiscovery::findUriFactory();

}
}

4.13. Discovery 91

PHP-HTTP Documentation, Release 1.0.0

4.13.10 PSR-17 Factory

The package also provides an Http\Discovery\Psr17Factory class that can be instantiated to get a generic PSR-17
factory:

use Http\Discovery\Psr17Factory;

$factory = new Psr17Factory();

// use any PSR-17 methods, e.g.
$request = $factory->createRequest();

Internally, this class relies on the concrete PSR-17 factories that are installed in your project and can use discovery to
find implementations if you do not specify them in the constructor.

Psr17Factory provides two additional methods that allow creating server requests or URI objects from the PHP
superglobals:

$serverRequest = $factory->createServerRequestFromGlobals();
$uri = $factory->createUriFromGlobals();

New in version 1.15: The Psr17Factory class is available since version 1.15.

4.13.11 PSR-18 Client Discovery

This type of discovery finds a PSR-18 HTTP Client implementation:

use Psr\Http\Client\ClientInterface;
use Http\Discovery\Psr18ClientDiscovery;

class MyClass
{

/**
* @var ClientInterface
*/
private $httpClient;

public function __construct(ClientInterface $httpClient = null)
{

$this->httpClient = $httpClient ?: Psr18ClientDiscovery::find();
}

}

4.13.12 PSR-7 Message Factory Discovery

New in version 1.6: This is deprecated and will be removed in 2.0. Consider using PSR-17 Factory Discovery.

This type of discovery finds a HTTP Factories (deprecated) for a PSR-7 Message implementation:

use Http\Message\MessageFactory;
use Http\Discovery\MessageFactoryDiscovery;

class MyClass
(continues on next page)

92 Chapter 4. Community

https://www.php-fig.org/psr/psr-18
https://www.php-fig.org/psr/psr-7

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

{
/**
* @var MessageFactory
*/
private $messageFactory;

/**
* @param MessageFactory|null $messageFactory to create PSR-7 requests.
*/
public function __construct(MessageFactory $messageFactory = null)
{

$this->messageFactory = $messageFactory ?: MessageFactoryDiscovery::find();
}

}

4.13.13 PSR-7 URI Factory Discovery

New in version 1.6: This is deprecated and will be removed in 2.0. Consider using PSR-17 Factory Discovery.

This type of discovery finds a URI factory for a PSR-7 URI implementation:

use Http\Message\UriFactory;
use Http\Discovery\UriFactoryDiscovery;

class MyClass
{

/**
* @var UriFactory
*/
private $uriFactory;

/**
* @param UriFactory|null $uriFactory to create UriInterface instances from strings.
*/
public function __construct(UriFactory $uriFactory = null)
{

$this->uriFactory = $uriFactory ?: UriFactoryDiscovery::find();
}

}

4.13.14 Mock Client Discovery

You may find yourself testing parts of your application that are dependent on an HTTP Client using the Discovery
Service, but do not necessarily need to perform the request nor contain any special configuration. In this case, the
Http\Mock\Client from the php-http/mock-client package is typically used to fake requests and keep your tests
nicely decoupled. However, for the best stability in a production environment, the mock client is not set to be found
via the Discovery Service. Attempting to run a test which relies on discovery and uses a mock client will result in an
Http\Discovery\Exception\NotFoundException. Thankfully, Discovery gives us a Mock Client strategy that
can be added straight to the Discovery. Let’s take a look:

4.13. Discovery 93

https://www.php-fig.org/psr/psr-7

PHP-HTTP Documentation, Release 1.0.0

use MyCustomService;
use Http\Mock\Client as MockClient;
use Http\Discovery\Psr18ClientDiscovery;
use Http\Discovery\Strategy\MockClientStrategy;

class MyCustomServiceTest extends TestCase
{

public function setUp()
{

Psr18ClientDiscovery::prependStrategy(MockClientStrategy::class);

$this->service = new MyCustomService;
}

public function testMyCustomServiceDoesSomething()
{

// Test...
}

}

In the example of a test class above, we have our MyCustomService which relies on an HTTP Client implementation.
We do not need to test that the actual request our custom service makes is successful in this test class, so it makes sense
to use the Mock Client. However, we do want to make sure that our dependency injection using the Discovery service
properly works, as this is a major feature of our service. By calling the HttpClientDiscovery’s prependStrategy
method and passing in the MockClientStrategy namespace, we have now added the ability to discover the mock
client and our tests will work as desired.

It is important to note that you must explicitly enable the MockClientStrategy and that it is not used by the Discovery
Service by default. It is simply provided as a convenient option when writing tests.

4.14 Multipart Stream Builder

A multipart stream is a special kind of stream that is used to transfer files over HTTP. There is currently no PSR-7
support for multipart streams as they are considered to be normal streams with a special content. A multipart stream
HTTP request may look like this:

POST / HTTP/1.1
Host: example.com
Content-Type: multipart/form-data; boundary="578de3b0e3c46.2334ba3"

--578de3b0e3c46.2334ba3
Content-Disposition: form-data; name="foo"
Content-Length: 15

A normal stream
--578de3b0e3c46.2334ba3
Content-Disposition: form-data; name="bar"; filename="bar.png"
Content-Length: 71
Content-Type: image/png

?PNG

(continues on next page)

94 Chapter 4. Community

PHP-HTTP Documentation, Release 1.0.0

(continued from previous page)

???
IHDR??? ??? ?????? ???? IDATx{c???51?)?:??????IEND?B`?
--578de3b0e3c46.2334ba3
Content-Type: text/plain
Content-Disposition: form-data; name="baz"
Content-Length: 6

string
--578de3b0e3c46.2334ba3--

In the request above you see a set of HTTP headers and a body with two streams. The body starts and ends with a
“boundary” and it is also this boundary that separates the streams. That boundary also needs to be specified in the
Content-Type header.

4.14.1 Building a Multipart Stream

To build a multipart stream you may use the MultipartStreamBuilder. It is not coupled to any stream implemen-
tation so it needs a StreamFactory to create the streams.

$streamFactory = StreamFactoryDiscovery::find();
$builder = new MultipartStreamBuilder($streamFactory);
$builder
->addResource('foo', $stream)
->addResource('bar', fopen($filePath, 'r'), ['filename' => 'bar.png'])
->addData('baz', ['headers' => ['Content-Type' => 'text/plain']]);

$multipartStream = $builder->build();
$boundary = $builder->getBoundary();

$request = MessageFactoryDiscovery::find()->createRequest(
'POST',
'http://example.com',
['Content-Type' => 'multipart/form-data; boundary="'.$boundary.'"'],
$multipartStream

);

$response = HttpClientDiscovery::find()->sendRequest($request);

The second parameter of MultipartStreamBuilder::addResource() is the content of the stream. The supported
input is the same as StreamFactory::createStream().

4.15 Development

4.15.1 Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of fostering an open and welcoming community, we
pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation,
submitting pull requests or patches, and other activities.

4.15. Development 95

PHP-HTTP Documentation, Release 1.0.0

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level
of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size,
race, ethnicity, age, religion, or nationality.

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery

• Personal attacks

• Trolling or insulting/derogatory comments

• Public or private harassment

• Publishing other’s private information, such as physical or electronic addresses, without explicit permission

• Other unethical or unprofessional conduct

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

By adopting this Code of Conduct, project maintainers commit themselves to fairly and consistently applying these
principles to every aspect of managing this project. Project maintainers who do not follow or enforce the Code of
Conduct may be permanently removed from the project team.

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting a project maintainer
at team@php-http.org. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. Maintainers are obligated to maintain confidentiality with regard to
the reporter of an incident.

This Code of Conduct is adapted from the Contributor Covenant, version 1.3.0, available at http://contributor-covenant.
org/version/1/3/0/

4.15.2 Contributing

If you’re here, you would like to contribute to this project and you’re really welcome!

Bug Reports

If you find a bug or a documentation issue, please report it or even better: fix it :). If you report it, please be as precise
as possible. Here is a little list of required information:

• Precise description of the bug

• Details of your environment (for example: OS, PHP version, installed extensions)

• Backtrace which might help identifying the bug

96 Chapter 4. Community

mailto:team@php-http.org
http://contributor-covenant.org
http://contributor-covenant.org/version/1/3/0/
http://contributor-covenant.org/version/1/3/0/

PHP-HTTP Documentation, Release 1.0.0

Security Issues

If you discover any security related issues, please contact us at security@php-http.org instead of submitting an issue
on GitHub. This allows us to fix the issue and release a security hotfix without publicly disclosing the vulnerability.

Feature Requests

If you think a feature is missing, please report it or even better: implement it :). If you report it, describe the more
precisely what you would like to see implemented and we will discuss what is the best approach for it. If you can do
some research before submitting it and link the resources to your description, you’re awesome! It will allow us to more
easily understood/implement it.

Sending a Pull Request

If you’re here, you are going to fix a bug or implement a feature and you’re the best! To do it, first fork the repository,
clone it and create a new branch with the following commands:

$ git clone git@github.com:your-name/repo-name.git
$ git checkout -b feature-or-bug-fix-description

Then install the dependencies through Composer:

$ composer install

Write code and tests. When you are ready, run the tests. (This is usually PHPUnit or PHPSpec)

$ composer test

When you are ready with the code, tested it and documented it, you can commit and push it with the following com-
mands:

$ git commit -m "Feature or bug fix description"
$ git push origin feature-or-bug-fix-description

Note: Please write your commit messages in the imperative and follow the guidelines for clear and concise messages.

Then create a pull request on GitHub.

Please make sure that each individual commit in your pull request is meaningful. If you had to make multiple interme-
diate commits while developing, please squash them before submitting with the following commands (here, we assume
you would like to squash 3 commits in a single one):

$ git rebase -i HEAD~3

If your branch conflicts with the master branch, you will need to rebase and re-push it with the following commands:

$ git remote add upstream git@github.com:orga/repo-name.git
$ git pull --rebase upstream master
$ git push -f origin feature-or-bug-fix-description

4.15. Development 97

mailto:security@php-http.org
https://getcomposer.org
http://phpunit.de/
http://phpspec.net/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://help.github.com/articles/creating-a-pull-request/

PHP-HTTP Documentation, Release 1.0.0

Coding Standard

This repository follows the PSR-2 standard and so, if you want to contribute, you must follow these rules.

Semver

We are trying to follow semver. When you are making BC breaking changes, please let us know why you think it is
important. In this case, your patch can only be included in the next major version.

Contributor Code of Conduct

This project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its
terms.

License

All of our packages are licensed under the MIT license.

4.15.3 Building the Documentation

We build the documentation with Sphinx. You could install it on your system or use Docker.

Install Sphinx

Install on Local Machine

The installation for Sphinx differs between system. See Sphinx installation page for details. When Sphinx is installed
you need to install enchant (e.g. sudo apt-get install enchant).

Using Docker

If you are using docker. Run the following commands from the repository root.

$ docker run --rm -t -v "$PWD":/doc webplates/readthedocs build
$ docker run --rm -t -v "$PWD":/doc webplates/readthedocs check

Alternatively you can run the make commands as well:

$ docker run --rm -t -v "$PWD":/doc webplates/readthedocs make html
$ docker run --rm -t -v "$PWD":/doc webplates/readthedocs make spelling

To automatically rebuild the documentation upon change run:

$ docker run --rm -t -v "$PWD":/doc webplates/readthedocs watch

For more details see the readthedocs image documentation.

98 Chapter 4. Community

http://www.php-fig.org/psr/psr-2
http://semver.org
http://sphinx-doc.org/latest/install.html
http://www.abisource.com/projects/enchant/
https://hub.docker.com/r/webplates/readthedocs/

PHP-HTTP Documentation, Release 1.0.0

Build Documentation

Before building the documentation make sure to install all requirements.

$ pip install -r requirements.txt

To build the docs:

$ make html
$ make spelling

4.15.4 License

Copyright (c) 2014–2015 Eric GELOEN <geloen.eric@gmail.com>

Copyright (c) 2015–2016 PHP HTTP Team <team@php-http.org>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

4.15. Development 99

mailto:geloen.eric@gmail.com
mailto:team@php-http.org

PHP-HTTP Documentation, Release 1.0.0

100 Chapter 4. Community

INDEX

R
RFC

RFC 1950, 46
RFC 1951, 46
RFC 1952, 46
RFC 6265#section-4, 46
RFC 7230, 44
RFC 7230#section-4.1, 44
RFC 7234, 41

101

	HTTPlug
	They use us

	Packages
	The future
	Community
	HTTPlug: HTTP client abstraction
	Client Interfaces
	Implementations
	Usage
	History

	HTTPlug usage
	HTTPlug for library users
	TL;DR
	Details
	Troubleshooting
	Composer fails
	No Message Factories

	Background

	HTTPlug Tutorial
	Setting up the Project
	Writing Some Simple Code
	Using an Asynchronous Client
	Using the Callback System
	Using the promise directly
	Example

	Handling Errors

	HTTPlug for Library Developers
	Manage Dependencies
	Testing your library
	Messages
	Discovery
	Plugins
	User Documentation
	Your Final composer.json

	Exceptions
	Migrating to HTTPlug
	Migrating from Ivory HTTP Adapter
	Migrating from Guzzle

	Clients & Adapters
	cURL Client
	Installation
	Usage
	Configuring Client
	Further reading

	Mock Client
	Collect Requests
	Fake Responses and Exceptions
	Mocking request-dependent responses
	Further reading

	Symfony Client
	Installation
	Usage

	Artax Adapter
	Installation
	Usage
	Further reading

	Guzzle 7 Adapter
	Installation
	Usage
	Further reading

	React Adapter
	Installation
	Usage
	Further reading

	Buzz Adapter (deprecated)
	Installation
	Usage
	Be Aware
	Further reading

	CakePHP Adapter (deprecated)
	Installation
	Usage
	Further reading

	Guzzle5 Adapter (deprecated)
	Installation
	Usage
	Further reading

	Guzzle 6 Adapter (deprecated)
	Installation
	Usage
	Further reading

	Socket Client (deprecated)
	Features
	Installation
	Usage
	Further reading

	Zend Adapter (deprecated)
	Installation

	Current Clients and Adapters
	Legacy Clients and Adapters
	Composer Virtual Packages

	Plugins
	Introduction
	Install
	How it works
	Configuration Options
	max_restarts: int (default 10)
	debug_plugins: array of Plugin

	Libraries that Require Plugins

	Building Custom Plugins
	Contributing Your Plugins to PHP-HTTP

	Seekable Body Plugins
	Authentication Plugin
	Cache Plugin
	Install
	Usage
	Options
	Generating a cache key
	Controlling cache listeners
	Semantics of null values
	Caching of different request methods

	Cache Control Handling

	Content-Length Plugin
	Content-Type Plugin
	Options

	Cookie Plugin
	Decoder Plugin
	Error Plugin
	Header Plugins
	Default Headers Values
	Mandatory Headers Values
	Removing Headers
	Appending Header Values
	Mixing operations

	History Plugin
	Logger Plugin
	Install
	Usage

	Query plugin
	Default Query parameters

	Redirect Plugin
	Options

	Request URI Manipulations
	Retry Plugin
	Async
	Options
	Interaction with Exceptions

	Stopwatch Plugin
	Install
	Usage

	VCR Plugin - Record and Replay Responses
	Install
	Usage
	The naming strategy
	The recorder
	The plugins
	Example

	Framework Integrations
	Symfony Bundle
	Installation
	Using Symfony Flex
	Without Symfony Flex
	Activate Bundle in Symfony 4 and newer
	Activate Bundle in Symfony 3

	Usage
	Autowiring
	Web Debug Toolbar
	Discovery of Factory Classes
	Configure Clients
	Plugins
	Configure a Custom Plugin
	Authentication
	VCR Plugin

	Special HTTP Clients
	List of Services
	Usage for Reusable Bundles
	Mock Responses In Functional Tests

	Full configuration

	Backwards compatibility
	Symfony Bundle
	Discovery

	Message
	Authentication
	Installation
	Authentication Methods
	Integration with HTTPlug
	Examples
	Basic Auth
	Bearer
	WSSE
	Query Params
	Chain
	Matching
	Header

	Implement Your Own

	HTTP Factories (deprecated)
	Rationale
	Factories
	Usage

	Client Common
	HttpMethodsClient
	BatchClient
	PluginClient
	HttpClientPool
	LeastUsedClientPool
	RoundRobinClientPool
	RandomClientPool

	HTTP Client Router

	Adapter Integration Tests
	Promise
	Asynchronous requests
	Wait
	Then

	Discovery
	Using discovery in a shared library
	Auto-installation
	Strategies
	Implementation Pinning
	Installation
	Common Errors
	Could not find resource using any discovery strategy
	No factories found
	No HTTPlug clients found

	HTTP Client Discovery
	HTTP Asynchronous Client Discovery
	PSR-17 Factory Discovery
	PSR-17 Factory
	PSR-18 Client Discovery
	PSR-7 Message Factory Discovery
	PSR-7 URI Factory Discovery
	Mock Client Discovery

	Multipart Stream Builder
	Building a Multipart Stream

	Development
	Contributor Code of Conduct
	Contributing
	Bug Reports
	Security Issues
	Feature Requests
	Sending a Pull Request
	Coding Standard
	Semver
	Contributor Code of Conduct
	License

	Building the Documentation
	Install Sphinx
	Install on Local Machine
	Using Docker

	Build Documentation

	License

	Index

